Display options
Share it on

Genome Res. 2021 Sep;31(9):1629-1637. doi: 10.1101/gr.275677.121. Epub 2021 Aug 23.

Inferring genes that escape X-Chromosome inactivation reveals important contribution of variable escape genes to sex-biased diseases.

Genome research

Renan Sauteraud, Jill M Stahl, Jesica James, Marisa Englebright, Fang Chen, Xiaowei Zhan, Laura Carrel, Dajiang J Liu

Affiliations

  1. Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
  2. Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
  3. Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
  4. Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8821, USA.

PMID: 34426515 PMCID: PMC8415373 DOI: 10.1101/gr.275677.121

Abstract

The X Chromosome plays an important role in human development and disease. However, functional genomic and disease association studies of X genes greatly lag behind autosomal gene studies, in part owing to the unique biology of X-Chromosome inactivation (XCI). Because of XCI, most genes are only expressed from one allele. Yet, ∼30% of X genes "escape" XCI and are transcribed from both alleles, many only in a proportion of the population. Such interindividual differences are likely to be disease relevant, particularly for sex-biased disorders. To understand the functional biology for X-linked genes, we developed X-Chromosome inactivation for RNA-seq (XCIR), a novel approach to identify escape genes using bulk RNA-seq data. Our method, available as an R package, is more powerful than alternative approaches and is computationally efficient to handle large population-scale data sets. Using annotated XCI states, we examined the contribution of X-linked genes to the disease heritability in the United Kingdom Biobank data set. We show that escape and variable escape genes explain the largest proportion of X heritability, which is in large part attributable to X genes with Y homology. Finally, we investigated the role of each XCI state in sex-biased diseases and found that although XY homologous gene pairs have a larger overall effect size, enrichment for variable escape genes is significantly increased in female-biased diseases. Our results, for the first time, quantitate the importance of variable escape genes for the etiology of sex-biased disease, and our pipeline allows analysis of larger data sets for a broad range of phenotypes.

© 2021 Sauteraud et al.; Published by Cold Spring Harbor Laboratory Press.

References

  1. PLoS Genet. 2014 Feb 06;10(2):e1004127 - PubMed
  2. Cell. 2021 Apr 1;184(7):1790-1803.e17 - PubMed
  3. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13015-13020 - PubMed
  4. Sci Immunol. 2018 Jan 26;3(19): - PubMed
  5. Genet Epidemiol. 2017 Dec;41(8):898-914 - PubMed
  6. J Endocrinol Invest. 2021 May;44(5):951-956 - PubMed
  7. Nature. 2005 Mar 17;434(7031):325-37 - PubMed
  8. BMC Biol. 2017 Feb 7;15(1):7 - PubMed
  9. Am J Hum Genet. 2006 Sep;79(3):493-9 - PubMed
  10. Mol Biol Evol. 2016 Feb;33(2):384-93 - PubMed
  11. Nat Commun. 2019 Jul 8;10(1):3009 - PubMed
  12. Nature. 2005 Mar 17;434(7031):400-4 - PubMed
  13. Nature. 2010 Apr 1;464(7289):768-72 - PubMed
  14. Nature. 2017 Oct 11;550(7675):244-248 - PubMed
  15. PLoS One. 2011;6(8):e23506 - PubMed
  16. Philos Trans R Soc Lond B Biol Sci. 2017 Nov 5;372(1733): - PubMed
  17. Nat Biotechnol. 2016 May;34(5):525-7 - PubMed
  18. Cell Rep. 2020 Dec 8;33(10):108485 - PubMed
  19. Genome Biol. 2013 Nov 01;14(11):R122 - PubMed
  20. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  21. Biol Sex Differ. 2015 Dec 30;6:35 - PubMed
  22. Trends Genet. 2019 Jul;35(7):478-488 - PubMed
  23. Nature. 2014 Apr 24;508(7497):494-9 - PubMed
  24. Nat Rev Genet. 2019 Mar;20(3):173-190 - PubMed
  25. BMC Genomics. 2019 Mar 12;20(1):201 - PubMed
  26. Nature. 2013 Sep 26;501(7468):506-11 - PubMed
  27. JCI Insight. 2019 Apr 4;4(7): - PubMed
  28. Nat Genet. 2017 Jan;49(1):10-16 - PubMed
  29. Nature. 2018 Oct;562(7726):203-209 - PubMed
  30. Nature. 2014 Apr 24;508(7497):488-93 - PubMed
  31. Nat Med. 2017 Nov 7;23(11):1243 - PubMed
  32. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2029-38 - PubMed
  33. Nature. 2015 Oct 1;526(7571):68-74 - PubMed
  34. Front Immunol. 2019 Apr 02;10:578 - PubMed
  35. Mol Med. 2020 Dec 9;26(1):127 - PubMed
  36. Hum Mol Genet. 2015 Mar 15;24(6):1528-39 - PubMed

Publication Types

Grant support