Display options
Share it on

Spinal Cord. 2021 Dec;59(12):1221-1239. doi: 10.1038/s41393-021-00680-y. Epub 2021 Aug 14.

Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury.

Spinal cord

Faheem I Bhatti, Oliver D Mowforth, Max B Butler, Aniqah I Bhatti, Sylva Adeeko, Melika Akhbari, Rory Dilworth, Ben Grodzinski, Temidayo Osunronbi, Luke Ottewell, Jye Quan Teh, Sophie Robinson, Gayathri Suresh, Unaiza Waheed, Benn Walker, Isla Kuhn, Lara Smith, Richard D Bartlett, Benjamin M Davies, Mark R N Kotter

Affiliations

  1. Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  2. Myelopathy.org, Cambridge, UK.
  3. Cambridge University Medical Library, Cambridge, UK.
  4. Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. [email protected].

PMID: 34392312 PMCID: PMC8629762 DOI: 10.1038/s41393-021-00680-y

Abstract

STUDY DESIGN: Systematic review.

OBJECTIVES: To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients.

METHODS: A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO (CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic SCI were included. Data extracted from relevant studies, included sample characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the SYRCLE checklist was used to assess risk of bias.

RESULTS: The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies.

CONCLUSION: Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.

© 2021. The Author(s).

References

  1. Neurotox Res. 2012 Apr;21(3):271-80 - PubMed
  2. J Neurotrauma. 2017 Sep 15;34(18):2609-2623 - PubMed
  3. PLoS Med. 2009 Jul 21;6(7):e1000097 - PubMed
  4. Expert Rev Neurother. 2011 Apr;11(4 Suppl):15-9 - PubMed
  5. FEBS J. 2007 Sep;274(17):4464-775 - PubMed
  6. Arch Phys Med Rehabil. 1999 May;80(5):580-6 - PubMed
  7. Free Radic Biol Med. 2011 Sep 1;51(5):1054-61 - PubMed
  8. Anat Rec (Hoboken). 2017 Dec;300(12):2091-2106 - PubMed
  9. Pain. 2021 Jul 1;162(Suppl 1):S26-S44 - PubMed
  10. J Neurotrauma. 2004 Aug;21(8):983-93 - PubMed
  11. Cell Physiol Biochem. 2017;43(6):2516-2524 - PubMed
  12. Neurosci Lett. 2015 Jun 15;597:19-24 - PubMed
  13. PLoS Biol. 2020 Jul 14;18(7):e3000410 - PubMed
  14. J Thorac Cardiovasc Surg. 2009 Dec;138(6):1409-16 - PubMed
  15. J Neurosci. 2002 Sep 1;22(17):7526-35 - PubMed
  16. Curr Neuropharmacol. 2021;19(3):402-432 - PubMed
  17. BMJ. 2018 Feb 22;360:k186 - PubMed
  18. Clin Pharmacol Ther. 2015 Jun;97(6):616-27 - PubMed
  19. J Neuroinflammation. 2013 Jul 23;10:91 - PubMed
  20. Neurobiol Dis. 2010 May;38(2):304-12 - PubMed
  21. Spinal Cord. 2014 Aug;52(8):588-95 - PubMed
  22. CNS Drug Rev. 2006 Fall-Winter;12(3-4):250-75 - PubMed
  23. Cell Death Dis. 2014 Sep 04;5:e1404 - PubMed
  24. J Neuropathol Exp Neurol. 1986 Nov;45(6):721-41 - PubMed
  25. Neuropharmacology. 2014 Feb;77:441-52 - PubMed
  26. Spine (Phila Pa 1976). 2001 Dec 15;26(24 Suppl):S2-12 - PubMed
  27. Clin Epidemiol. 2014 Sep 23;6:309-31 - PubMed
  28. PLoS One. 2017 Jan 12;12(1):e0169623 - PubMed
  29. J Pharmacol Exp Ther. 2008 Jul;326(1):12-23 - PubMed
  30. BMC Psychiatry. 2019 Feb 13;19(1):69 - PubMed
  31. Pain. 2021 Jul 1;162(Suppl 1):S45-S66 - PubMed
  32. Brain Res. 2017 Sep 15;1671:85-92 - PubMed
  33. Neurobiol Dis. 2009 Jan;33(1):57-71 - PubMed
  34. Neurobiol Dis. 2004 Apr;15(3):415-36 - PubMed
  35. J Spinal Cord Med. 2006;29(2):109-17 - PubMed
  36. BMC Med Res Methodol. 2014 Mar 26;14:43 - PubMed
  37. Stroke. 2010 Dec;41(12):2956-64 - PubMed
  38. Global Spine J. 2019 May;9(1 Suppl):65S-76S - PubMed
  39. Neural Regen Res. 2014 Nov 15;9(22):2008-12 - PubMed
  40. J Biol Chem. 2005 Sep 9;280(36):31405-12 - PubMed
  41. Pharmacol Res Perspect. 2014 Apr;2(2):e00034 - PubMed
  42. Br J Pharmacol. 2008 Jan;153(2):216-25 - PubMed
  43. J Thorac Cardiovasc Surg. 2019 Feb;157(2):494-503.e1 - PubMed
  44. Brain Res. 2011 Sep 15;1412:44-54 - PubMed
  45. Spinal Cord. 2017 Aug;55(8):714-721 - PubMed
  46. Spinal Cord. 2006 Sep;44(9):523-9 - PubMed
  47. F1000Res. 2019 Feb 28;8: - PubMed
  48. Cell Immunol. 2018 Jul;329:1-9 - PubMed
  49. BMJ. 2020 Jan 16;368:l6890 - PubMed

Publication Types

Grant support