Display options
Share it on

Pharmacol Rep. 2021 Aug;73(4):1096-1108. doi: 10.1007/s43440-021-00314-3. Epub 2021 Aug 24.

The coming together of allosteric and phosphorylation mechanisms in the molecular integration of A2A heteroreceptor complexes in the dorsal and ventral striatal-pallidal GABA neurons.

Pharmacological reports : PR

Dasiel O Borroto-Escuela, Luca Ferraro, Sarah Beggiato, Manuel Narváez, Ramon Fores-Pons, Jose E Alvarez-Contino, Karolina Wydra, Małgorzata Frankowska, Michael Bader, Małgorzata Filip, Kjell Fuxe

Affiliations

  1. Department of Neuroscience, Karolinska Institutet, Biomedicum (B0851), Solnavagen 9, 17177, Stockholm, Sweden. [email protected].
  2. Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain. [email protected].
  3. Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
  4. Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy.
  5. Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
  6. Policlínico Universitario Juan Bruno Zayas, Cifuentes, Villa Clara, Cuba.
  7. Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Sm?tna Street, 31343, Kraków, Poland.
  8. Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
  9. Department of Neuroscience, Karolinska Institutet, Biomedicum (B0851), Solnavagen 9, 17177, Stockholm, Sweden. [email protected].

PMID: 34426901 PMCID: PMC8413191 DOI: 10.1007/s43440-021-00314-3

Abstract

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP

© 2021. The Author(s).

Keywords: Adenosine A2A receptor; Allosteric receptor–receptor interactions; Cocaine; Oligomerization; Phosphorylation; Striatal-enriched protein tyrosine phosphatase

References

  1. Yasuda RP. Adenosine STEPs on synaptic function: an editorial for “the activity of the STriatal-enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A2A receptor on” page 284. J Neurochem. 2020;152(3):270–2. https://doi.org/10.1111/jnc.14901 . - PubMed
  2. Mallozzi C, Pepponi R, Visentin S, Chiodi V, Lombroso PJ, Bader M, Popoli P, Domenici MR. The activity of the Striatal-enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A2A receptor. J Neurochem. 2020;152(3):284–98. https://doi.org/10.1111/jnc.14866 . - PubMed
  3. Chiodi V, Mallozzi C, Ferrante A, Chen JF, Lombroso PJ, Di Stasi AM, Popoli P, Domenici MR. Cocaine-induced changes of synaptic transmission in the striatum are modulated by adenosine A2A receptors and involve the tyrosine phosphatase STEP. Neuropsychopharmacology. 2014;39(3):569–78. https://doi.org/10.1038/npp.2013.229 . - PubMed
  4. Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF. Receptor-receptor interactions within receptor mosaics. Impact Neuropsychopharmacol Brain Res Rev. 2008;58(2):415–52. https://doi.org/10.1016/j.brainresrev.2007.11.007 . - PubMed
  5. Borroto-Escuela DO, Hinz S, Navarro G, Franco R, Muller CE, Fuxe K. Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation. Front Neurosci. 2018;12:43. https://doi.org/10.3389/fnins.2018.00043 . - PubMed
  6. Borroto-Escuela DO, Wydra K, Filip M, Fuxe K. A2AR-D2R heteroreceptor complexes in cocaine reward and addiction. Trends Pharmacol Sci. 2018;39(12):1008–20. https://doi.org/10.1016/j.tips.2018.10.007 . - PubMed
  7. Borroto-Escuela DO, Wydra K, Li X, Rodriguez D, Carlsson J, Jastrzebska J, Filip M, Fuxe K. Disruption of A2AR-D2R heteroreceptor complexes after A2AR transmembrane 5 peptide administration enhances cocaine self-administration in rats. Mol Neurobiol. 2018;55(8):7038–48. https://doi.org/10.1007/s12035-018-0887-1 . - PubMed
  8. Borroto-Escuela DO, Narvaez M, Wydra K, Pintsuk J, Pinton L, Jimenez-Beristain A, Di Palma M, Jastrzebska J, Filip M, Fuxe K. Cocaine self-administration specifically increases A2AR-D2R and D2R-sigma1R heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. Pharmacol Biochem Behav. 2017;155:24–31. https://doi.org/10.1016/j.pbb.2017.03.003 . - PubMed
  9. Surmeier DJ, Graves SM, Shen W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr Opin Neurobiol. 2014;29:109–17. https://doi.org/10.1016/j.conb.2014.07.008 . - PubMed
  10. Puighermanal E, Castell L, Esteve-Codina A, Melser S, Kaganovsky K, Zussy C, Boubaker-Vitre J, Gut M, Rialle S, Kellendonk C, Sanz E, Quintana A, Marsicano G, Martin M, Rubinstein M, Girault JA, Ding JB, Valjent E. Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nat Commun. 2020;11(1):1957. https://doi.org/10.1038/s41467-020-15716-9 . - PubMed
  11. Borroto-Escuela DO, Fuxe K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J Neural Transm. 2019;126(4):455–71. https://doi.org/10.1007/s00702-019-01969-2 . - PubMed
  12. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98(3):1591–625. https://doi.org/10.1152/physrev.00049.2017 . - PubMed
  13. Won S, Incontro S, Li Y, Nicoll RA, Roche KW. The STEP61 interactome reveals subunit-specific AMPA receptor binding and synaptic regulation. Proc Natl Acad Sci USA. 2019;116(16):8028–37. https://doi.org/10.1073/pnas.1900878116 . - PubMed
  14. Domenici MR, Mallozzi C, Pepponi R, Casella I, Chiodi V, Ferrante A, Popoli P. Insight into the role of the striatal-enriched protein tyrosine phosphatase (STEP) in A2A receptor-mediated effects in the central nervous system. Front Pharmacol. 2021;12: 647742. https://doi.org/10.3389/fphar.2021.647742 . - PubMed
  15. Won S, Roche KW. Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP61). J Physiol. 2021;599(2):443–51. https://doi.org/10.1113/JP278703 . - PubMed
  16. Zhang Y, Venkitaramani DV, Gladding CM, Zhang Y, Kurup P, Molnar E, Collingridge GL, Lombroso PJ. The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci Off J Soc Neurosci. 2008;28(42):10561–6. https://doi.org/10.1523/JNEUROSCI.2666-08.2008 . - PubMed
  17. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci. 2008;11(12):1402–9. https://doi.org/10.1038/nn.2216 . - PubMed
  18. Zhai S, Shen W, Graves SM, Surmeier DJ. Dopaminergic modulation of striatal function and Parkinson’s disease. J Neural Transm. 2019;126(4):411–22. https://doi.org/10.1007/s00702-019-01997-y . - PubMed
  19. Stromberg I, Popoli P, Muller CE, Ferre S, Fuxe K. Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci. 2000;12(11):4033–7. https://doi.org/10.1046/j.1460-9568.2000.00288.x . - PubMed
  20. Fuxe K, Hall H, Kohler C. Evidence for an exclusive localization of 3H-ADTN binding sites to postsynaptic nerve cells in the striatum of the rat. Eur J Pharmacol. 1979;58(4):515–7. https://doi.org/10.1016/0014-2999(79)90328-5 . - PubMed
  21. Wydra K, Gawlinski D, Gawlinska K, Frankowska M, Borroto-Escuela DO, Fuxe K, Filip M. Adenosine A2A receptors in substance use disorders: a focus on cocaine. Cells. 2020. https://doi.org/10.3390/cells9061372 . - PubMed
  22. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol. 2001;24(2):97–129. https://doi.org/10.1016/S0893-133X(00)00195-0 . - PubMed
  23. Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev. 2015;35(4):790–848. https://doi.org/10.1002/med.21344 . - PubMed
  24. Zoli M, Agnati LF, Hedlund PB, Li XM, Ferre S, Fuxe K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol. 1993;7(3–4):293–334. https://doi.org/10.1007/BF02769180 . - PubMed
  25. Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, Duchou J, Van Craenenbroeck K, Suarez-Boomgaard D, Rivera A, Guidolin D, Agnati LF, Fuxe K. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci. 2014;15(5):8570–90. https://doi.org/10.3390/ijms15058570 . - PubMed
  26. Greengard P, Nairn AC, Girault JA, Ouimet CC, Snyder GL, Fisone G, Allen PB, Fienberg A, Nishi A. The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev. 1998;26(2–3):274–84. https://doi.org/10.1016/s0165-0173(97)00057-x . - PubMed
  27. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Herve D, Girault JA. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA. 2005;102(2):491–6. https://doi.org/10.1073/pnas.0408305102 . - PubMed
  28. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci. 2006;26(7):2080–7. https://doi.org/10.1523/JNEUROSCI.3574-05.2006 . - PubMed
  29. Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, Danish A, Lacher SK, Cervinkova B, Rafehi M, Fuxe K, Schiedel AC, Franco R, Muller CE. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget. 2018;9(17):13593–611. https://doi.org/10.18632/oncotarget.24423 . - PubMed
  30. Borroto-Escuela DO, Carlsson J, Ambrogini P, Narvaez M, Wydra K, Tarakanov AO, Li X, Millon C, Ferraro L, Cuppini R, Tanganelli S, Liu F, Filip M, Diaz-Cabiale Z, Fuxe K. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci. 2017;11:37. https://doi.org/10.3389/fncel.2017.00037 . - PubMed
  31. Zhu Y, Dwork AJ, Trifilieff P, Javitch JA. Detection of G protein-coupled receptor complexes in postmortem human brain by proximity ligation assay. Curr Protoc Neurosci. 2020;91(1): e86. https://doi.org/10.1002/cpns.86 . - PubMed
  32. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques. 2011;51(2):111–8. https://doi.org/10.2144/000113719 . - PubMed
  33. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO, Palkovits M, Agnati LF, Fuxe K. G protein-coupled receptor heterodimerization in the brain. Methods Enzymol. 2013;521:281–94. https://doi.org/10.1016/B978-0-12-391862-8.00015-6 . - PubMed
  34. Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, Kapla J, Jaiteh M, Ranganathan A, Lazarova T, Fuxe K, Carlsson J. Mapping the interface of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine receptor heteromer. Front Pharmacol. 2018;9:829. https://doi.org/10.3389/fphar.2018.00829 . - PubMed
  35. Borroto-Escuela DO, Marcellino D, Narvaez M, Flajolet M, Heintz N, Agnati L, Ciruela F, Fuxe K. A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochem Biophys Res Commun. 2010;394(1):222–7. https://doi.org/10.1016/j.bbrc.2010.02.168 . - PubMed
  36. Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN. Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A–D2 receptor heteromerization. Neuropsychopharmacology. 2009;34(4):972–86. https://doi.org/10.1038/npp.2008.144 . - PubMed
  37. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Ciruela F, Agnati LF, Fuxe K. On the existence of a possible A2A–D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J Mol Biol. 2011;406(5):687–99. https://doi.org/10.1016/j.jmb.2011.01.022 . - PubMed
  38. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Gomez-Soler M, Corrales F, Marcellino D, Narvaez M, Frankowska M, Flajolet M, Heintz N, Agnati LF, Ciruela F, Fuxe K. Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys Res Commun. 2010;402(4):801–7. https://doi.org/10.1016/j.bbrc.2010.10.122 . - PubMed
  39. Borroto-Escuela DO, Romero-Fernandez W, Wydra K, Zhou Z, Suder A, Filip M, Fuxe K. OSU-6162, a Sigma1R ligand in low doses, can further increase the effects of cocaine self-administration on accumbal D2R heteroreceptor complexes. Neurotox Res. 2020;37(2):433–44. https://doi.org/10.1007/s12640-019-00134-7 . - PubMed
  40. Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, Casado V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA. 2002;99(18):11940–5. https://doi.org/10.1073/pnas.172393799 . - PubMed
  41. Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, Ferre S, Lujan R, Ciruela F. Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem. 2009;109(5):1497–507. https://doi.org/10.1111/j.1471-4159.2009.06078.x . - PubMed
  42. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci. 2006;29(11):647–54. https://doi.org/10.1016/j.tins.2006.09.004 . - PubMed
  43. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. 1963;20:140–4. https://doi.org/10.1111/j.1600-0773.1963.tb01730.x . - PubMed
  44. Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse. 1987;1(2):133–52. https://doi.org/10.1002/syn.890010203 . - PubMed
  45. Lombroso PJ, Naegele JR, Sharma E, Lerner M. A protein tyrosine phosphatase expressed within dopaminoceptive neurons of the basal ganglia and related structures. J Neurosci. 1993;13(7):3064–74. - PubMed
  46. Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Phil Trans R Soc London Ser B Biol Sci. 2015. https://doi.org/10.1098/rstb.2014.0183 . - PubMed
  47. Lombroso PJ, Ogren M, Kurup P, Nairn AC. Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000Research. 2016. https://doi.org/10.12688/f1000research.8571.1 . - PubMed
  48. Lambert LJ, Grotegut S, Celeridad M, Gosalia P, Backer LJ, Bobkov AA, Salaniwal S, Chung TD, Zeng FY, Pass I, Lombroso PJ, Cosford ND, Tautz L. Development of a robust high-throughput screening platform for inhibitors of the striatal-enriched tyrosine phosphatase (STEP). Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22094417 . - PubMed
  49. Svenningsson P, Lindskog M, Rognoni F, Fredholm BB, Greengard P, Fisone G. Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neuroscience. 1998;84(1):223–8. https://doi.org/10.1016/s0306-4522(97)00510-1 . - PubMed
  50. Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984;310(5977):503–5. https://doi.org/10.1038/310503a0 . - PubMed
  51. Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, Nairn AC, Greengard P. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci. 1999;2(1):13–7. https://doi.org/10.1038/4516 . - PubMed
  52. Dell’anno MT, Pallottino S, Fisone G. mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons. Neuropharmacology. 2013;66:179–86. https://doi.org/10.1016/j.neuropharm.2012.03.025 . - PubMed
  53. Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, Fuxe K, Ferre S. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology. 2001;25(4):505–13. https://doi.org/10.1016/S0893-133X(01)00256-1 . - PubMed
  54. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007;30(5):228–35. https://doi.org/10.1016/j.tins.2007.03.008 . - PubMed
  55. Salim H, Ferre S, Dalal A, Peterfreund RA, Fuxe K, Vincent JD, Lledo PM. Activation of adenosine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells. J Neurochem. 2000;74(1):432–9. https://doi.org/10.1046/j.1471-4159.2000.0740432.x . - PubMed
  56. Orlando LR, Dunah AW, Standaert DG, Young AB. Tyrosine phosphorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuropharmacology. 2002;43(2):161–73. https://doi.org/10.1016/s0028-3908(02)00113-2 . - PubMed
  57. Krania P, Dimou E, Bantouna M, Kouvaros S, Tsiamaki E, Papatheodoropoulos C, Sarantis K, Angelatou F. Adenosine A2A receptors are required for glutamate mGluR5- and dopamine D1 receptor-evoked ERK1/2 phosphorylation in rat hippocampus: involvement of NMDA receptor. J Neurochem. 2018;145(3):217–31. https://doi.org/10.1111/jnc.14268 . - PubMed
  58. Borroto-Escuela DO, Tarakanov AO, Brito I, Fuxe K. Glutamate heteroreceptor complexes in the brain. Pharmacol Rep. 2018;70(5):936–50. https://doi.org/10.1016/j.pharep.2018.04.002 . - PubMed
  59. Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M, Canals M, Terasmaa A, Fernandez-Teruel A, Tobena A, Popova E, Ferre S, Agnati L, Ciruela F, Martinez E, Scheel-Kruger J, Lluis C, Franco R, Fuxe K, Bader M. Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem. 2007;87(1):42–56. https://doi.org/10.1016/j.nlm.2006.05.004 . - PubMed
  60. Chiodi V, Ferrante A, Ferraro L, Potenza RL, Armida M, Beggiato S, Pezzola A, Bader M, Fuxe K, Popoli P, Domenici MR. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem. 2016;136(5):907–17. https://doi.org/10.1111/jnc.13421 . - PubMed
  61. Su TP, Hayashi T. Cocaine affects the dynamics of cytoskeletal proteins via sigma(1) receptors. Trends Pharmacol Sci. 2001;22(9):456–8. https://doi.org/10.1016/s0165-6147(00)01740-5 . - PubMed
  62. Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ. Sigma receptors: potential medications development target for anti-cocaine agents. Eur J Pharmacol. 2003;469(1–3):1–12. https://doi.org/10.1016/s0014-2999(03)01723-0 . - PubMed
  63. Fang X, Stachowiak EK, Dunham-Ems SM, Klejbor I, Stachowiak MK. Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: a novel mechanism of gene regulation. J Biol Chem. 2005;280(31):28451–62. https://doi.org/10.1074/jbc.M504400200 . - PubMed
  64. Romieu P, Phan VL, Martin-Fardon R, Maurice T. Involvement of the sigma(1) receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade. Neuropsychopharmacology. 2002;26(4):444–55. https://doi.org/10.1016/S0893-133X(01)00391-8 . - PubMed

Publication Types

Grant support