Display options
Share it on

Sci Adv. 2021 Aug 06;7(32). doi: 10.1126/sciadv.abi5987. Print 2021 Aug.

Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells.

Science advances

Cecilia Pessoa Rodrigues, Asifa Akhtar

Affiliations

  1. Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
  2. Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany.
  3. International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.
  4. Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany. [email protected].

PMID: 34362741 PMCID: PMC8346211 DOI: 10.1126/sciadv.abi5987

Abstract

Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Cell Rep. 2019 Dec 17;29(12):4144-4158.e7 - PubMed
  2. J Exp Med. 2014 Feb 10;211(2):245-62 - PubMed
  3. Cell Stem Cell. 2014 Oct 2;15(4):507-522 - PubMed
  4. Inflamm Res. 2009 Dec;58(12):909-19 - PubMed
  5. Cell Stem Cell. 2012 Nov 2;11(5):649-62 - PubMed
  6. Cell Stem Cell. 2010 Mar 5;6(3):279-86 - PubMed
  7. Haematologica. 2016 Mar;101(3):269-78 - PubMed
  8. Biochem Soc Trans. 2002 Nov;30(Pt 6):1010-4 - PubMed
  9. Cell. 2016 Nov 17;167(5):1310-1322.e17 - PubMed
  10. Biochem Biophys Res Commun. 2006 Dec 1;350(4):1000-5 - PubMed
  11. J Immunol. 2002 May 15;168(10):5222-32 - PubMed
  12. Nat Methods. 2018 May;15(5):379-386 - PubMed
  13. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12000-5 - PubMed
  14. Blood. 2019 May 2;133(18):1943-1952 - PubMed
  15. J Exp Med. 2006 Oct 2;203(10):2247-53 - PubMed
  16. Bioinformatics. 2019 Nov 1;35(22):4757-4759 - PubMed
  17. Nat Genet. 2009 Nov;41(11):1207-15 - PubMed
  18. Cell Stem Cell. 2019 Feb 7;24(2):213-225 - PubMed
  19. Sci Transl Med. 2017 Apr 26;9(387): - PubMed
  20. Nat Commun. 2019 Apr 23;10(1):1903 - PubMed
  21. Cell. 2017 May 18;169(5):807-823.e19 - PubMed
  22. Nat Genet. 2011 Dec 04;44(1):23-31 - PubMed
  23. Nature. 2020 Jul;583(7817):585-589 - PubMed
  24. Nature. 2014 Jun 19;510(7505):393-6 - PubMed
  25. PLoS Biol. 2018 Sep 20;16(9):e2003389 - PubMed
  26. Cell Rep. 2021 Jan 26;34(4):108663 - PubMed
  27. Cell. 2008 Dec 12;135(6):1118-29 - PubMed
  28. Nature. 2009 Apr 16;458(7240):904-8 - PubMed
  29. Cell Stem Cell. 2012 Aug 3;11(2):163-78 - PubMed
  30. J Biol Chem. 2010 Feb 12;285(7):4268-72 - PubMed
  31. Blood. 2009 Feb 19;113(8):1661-9 - PubMed
  32. J Clin Invest. 2015 May;125(5):2007-20 - PubMed
  33. Blood. 2017 Jan 5;129(1):48-59 - PubMed
  34. Mol Cell Biol. 2008 Aug;28(16):5093-105 - PubMed
  35. J Clin Oncol. 2010 May 20;28(15):2529-37 - PubMed
  36. Stem Cell Reports. 2014 Jun 06;3(1):44-59 - PubMed
  37. Cell Stem Cell. 2007 Aug 16;1(2):218-29 - PubMed
  38. Blood. 2019 May 16;133(20):2198-2211 - PubMed
  39. Oncogene. 2020 Apr;39(18):3611-3619 - PubMed
  40. Cell. 2020 Jul 9;182(1):127-144.e23 - PubMed
  41. Cell Stem Cell. 2020 May 7;26(5):793 - PubMed
  42. Sci Adv. 2020 May 20;6(21):eaaz4815 - PubMed
  43. Nat Genet. 2015 Sep;47(9):1030-7 - PubMed
  44. EMBO J. 2015 Mar 12;34(6):759-77 - PubMed
  45. Science. 2012 Aug 10;337(6095):742-6 - PubMed
  46. Leukemia. 2020 Jun;34(6):1613-1625 - PubMed
  47. Nat Genet. 2016 Oct;48(10):1193-203 - PubMed
  48. Cell Stem Cell. 2014 Jan 2;14(1):68-80 - PubMed
  49. Cell. 2008 Feb 22;132(4):631-44 - PubMed
  50. Blood. 2017 Dec 21;130(25):2762-2773 - PubMed
  51. Science. 2014 Aug 22;345(6199):943-9 - PubMed
  52. Br J Haematol. 2018 Jul;182(2):276-279 - PubMed
  53. Cytometry A. 2011 Feb;79(2):95-101 - PubMed
  54. Nat Genet. 2020 Apr;52(4):378-387 - PubMed
  55. Cell Stem Cell. 2015 Jul 2;17(1):35-46 - PubMed
  56. Cell Stem Cell. 2016 Dec 1;19(6):808-822 - PubMed
  57. Cell Stem Cell. 2018 Feb 1;22(2):157-170 - PubMed
  58. Science. 2020 Feb 14;367(6479): - PubMed
  59. Stem Cells. 2016 Mar;34(3):699-710 - PubMed
  60. Br J Haematol. 2008 Sep;142(5):802-7 - PubMed
  61. Blood. 2013 Jul 25;122(4):523-32 - PubMed
  62. Genes Dev. 2020 Nov 1;34(21-22):1503-1519 - PubMed
  63. J Leukoc Biol. 1985 Apr;37(4):407-22 - PubMed
  64. Blood. 2009 Feb 12;113(7):1432-43 - PubMed
  65. Curr Opin Hematol. 2006 Jul;13(4):243-8 - PubMed
  66. Methods Mol Med. 2002;72:409-21 - PubMed
  67. Nat Methods. 2016 Dec;13(12):1013-1020 - PubMed
  68. Blood. 2012 Apr 26;119(17):3900-7 - PubMed
  69. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  70. Cell Stem Cell. 2009 Oct 2;5(4):442-9 - PubMed
  71. Cell Stem Cell. 2012 May 4;10(5):520-30 - PubMed
  72. J Clin Invest. 2018 Aug 1;128(8):3280-3297 - PubMed
  73. Nat Cell Biol. 2018 Jul;20(7):836-846 - PubMed
  74. Genome Biol. 2018 Nov 7;19(1):189 - PubMed
  75. Genome Biol. 2016 Apr 28;17:77 - PubMed
  76. Nat Cell Biol. 2019 Nov;21(11):1309-1320 - PubMed
  77. Cell Stem Cell. 2014 Sep 4;15(3):350-364 - PubMed
  78. Cell Stem Cell. 2018 May 3;22(5):627-638 - PubMed
  79. Development. 2016 Dec 15;143(24):4571-4581 - PubMed
  80. Nat Methods. 2020 Jan;17(1):45-49 - PubMed
  81. Exp Hematol. 2014 Feb;42(2):74-82.e2 - PubMed
  82. Cell Stem Cell. 2016 Aug 4;19(2):266-277 - PubMed
  83. Oncogene. 2010 Apr 15;29(15):2192-204 - PubMed
  84. Blood. 2013 Sep 19;122(12):2039-46 - PubMed

Publication Types