Display options
Share it on

IUBMB Life. 2021 Aug 24; doi: 10.1002/iub.2541. Epub 2021 Aug 24.

Impact of natural mutations on the riboflavin transporter 2 and their relevance to human riboflavin transporter deficiency 2.

IUBMB life

Lara Console, Maria Tolomeo, Jessica Cosco, Keith Massey, Maria Barile, Cesare Indiveri

Affiliations

  1. Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.
  2. Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy.
  3. Cure RTD Foundation, Calgary, Alberta, Canada.

PMID: 34428344 DOI: 10.1002/iub.2541

Abstract

Riboflavin transporter deficiency 2 (RTD2) is a rare neurological disorder caused by mutations in the Solute carrier family 52 member 2 (Slc52a2) gene encoding human riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed and mediates tissue distribution of riboflavin, a water-soluble vitamin that, after conversion into FMN and FAD, plays pivotal roles in carbohydrate, protein, and lipid metabolism. The 3D structure of RFVT2 has been constructed by homology modeling using three different templates that are equilibrative nucleoside transporter 1 (ENT1), Fucose: proton symporter, and glucose transporter type 5 (GLUT5). The structure has been validated by several approaches. All known point mutations of RFVT2, associated with RTD2, have been localized in the protein 3D model. Six of these mutations have been introduced in the recombinant protein for functional characterization. The mutants W31S, S52F, S128L, L312P, C325G, and M423V have been expressed in E. coli, purified, and reconstituted into proteoliposomes for transport assay. All the mutants showed impairment of function. The K

© 2021 International Union of Biochemistry and Molecular Biology.

Keywords: gene variants; proteoliposomes; rare diseases; riboflavin; structure-function relationship; transport proteins

References

  1. Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis. 2016;39:545-557. - PubMed
  2. Bafunno V, Giancaspero TA, Brizio C, et al. Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem. 2004;279:95-102. - PubMed
  3. Olsen RKJ, Konarikova E, Giancaspero TA, et al. Riboflavin-responsive and -non-responsive mutations in FAD synthase cause multiple acyl-CoA dehydrogenase and combined respiratory-chain deficiency. Am J Hum Genet. 2016;98:1130-1145. - PubMed
  4. Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, et al. Energy matters: mitochondrial proteomics for biomedicine. Proteomics. 2011;11:657-674. - PubMed
  5. Fernandez-Banares F, Abad-Lacruz A, Xiol X, et al. Vitamin status in patients with inflammatory bowel disease. Am J Gastroenterol. 1989;84:744-748. - PubMed
  6. Rosenthal WS, Adham NF, Lopez R, Cooperman JM. Riboflavin deficiency in complicated chronic alcoholism. Am J Clin Nutr. 1973;26:858-860. - PubMed
  7. Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ. Riboflavin deficiency: implications for general human health and inborn errors of metabolism. Int J Mol Sci. 2020;21:3847-3872. - PubMed
  8. Levy G, Jusko WJ. Factors affecting the absorption of riboflavin in man. J Pharm Sci. 1966;55:285-289. - PubMed
  9. Yonezawa A, Masuda S, Katsura T, Inui K. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol. 2008;295:C632-C641. - PubMed
  10. Yonezawa A, Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34:693-701. - PubMed
  11. Green P, Wiseman M, Crow YJ, et al. Brown-Vialetto-Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in c20orf54. Am J Hum Genet. 2010;86:485-489. - PubMed
  12. Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis. 2011;34:159-164. - PubMed
  13. O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis. 2019;42:598-607. - PubMed
  14. Amir F, Atzinger C, Massey K, Greinwald J, Hunter LL, Kettler M. The clinical journey of patients with riboflavin transporter deficiency type 2. J Child Neurol. 2020;35:283-290. - PubMed
  15. Foley AR, Menezes MP, Pandraud A, et al. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain. 2014;137:44-56. - PubMed
  16. Ciccolella M, Corti S, Catteruccia M, et al. Riboflavin transporter 3 involvement in infantile Brown-Vialetto-Van Laere disease: two novel mutations. J Med Genet. 2013;50:104-107. - PubMed
  17. Haack TB, Makowski C, Yao Y, et al. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome. J Inherit Metab Dis. 2012;35:943-948. - PubMed
  18. Subramanian VS, Kapadia R, Ghosal A, Said HM. Identification of residues/sequences in the human riboflavin transporter-2 that is important for function and cell biology. Nutr Metab (Lond). 2015;12:13. - PubMed
  19. Console L, Tolomeo M, Colella M, Barile M, Indiveri C. Reconstitution in proteoliposomes of the recombinant human riboflavin transporter 2 (SLC52A2) overexpressed in E. coli. Int J Mol Sci. 2019;20:4416-4428. - PubMed
  20. Console L, Tolomeo M, Indiveri C. Functional study of the human riboflavin transporter 2 using proteoliposomes system. Methods Mol Biol. 2021;2280:45-54. - PubMed
  21. Gabler F, Nam SZ, Till S, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020;72:e108. - PubMed
  22. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845-858. - PubMed
  23. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform. 2016;54:5.6.1-5.6.37. - PubMed
  24. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-461. - PubMed
  25. Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612. - PubMed
  26. Wright NJ, Lee SY. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat Struct Mol Biol. 2019;26:599-606. - PubMed
  27. Dang S, Sun L, Huang Y, Lu F, Liu Y, et al. Structure of a fucose transporter in an outward-open conformation. Nature. 2010;467:734-738. - PubMed
  28. Nomura N, Verdon G, Kang HJ, et al. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature. 2015;526:397-401. - PubMed
  29. Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43:W401-W407. - PubMed
  30. Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K-I. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr. 2010;140:1220-1226. - PubMed
  31. Bicket A, Coe IR. N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function. Biosci Rep. 2016;36:e00376. - PubMed
  32. Petrovski S, Shashi V, Petrou S, et al. Exome sequencing results in successful riboflavin treatment of a rapidly progressive neurological condition. Cold Spring Harb Mol Case Stud. 2015;1:a000257. - PubMed

Publication Types

Grant support