Display options
Share it on

iScience. 2021 Jul 21;24(8):102888. doi: 10.1016/j.isci.2021.102888. eCollection 2021 Aug 20.

Bisphenol A-induced DNA damages promote to lymphoma progression in human lymphoblastoid cells through aberrant CTNNB1 signaling pathway.

iScience

Yin-Kai Chen, Yan-Yan Tan, Min Yao, Ho-Chen Lin, Mon-Hsun Tsai, Yu-Yun Li, Yih-Jen Hsu, Tsung-Tao Huang, Chia-Wei Chang, Chih-Ming Cheng, Chun-Yu Chuang

Affiliations

  1. Department of Hematology, National Taiwan University Cancer Center, Taipei, 106, Taiwan.
  2. Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
  3. Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
  4. Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
  5. Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
  6. Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan.
  7. Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan.
  8. Mike & Clement TECH Co., Ltd., Changhua Country, Taiwan.

PMID: 34401669 PMCID: PMC8350018 DOI: 10.1016/j.isci.2021.102888

Abstract

Lymphoma is a group of blood cancers that develop from the immune system, and one of the main risk factors is associated with exposure to environmental chemicals. Bisphenol A (BPA) is a common chemical used in the manufacture of materials in polycarbonate and epoxy plastic products and can interfere with the immune system. BPA is considered to possibly induce lymphoma development by affecting the immune system, but its potential mechanisms have not been well established. This study performed a gene-network analysis of microarray data sets in human lymphoma tissues as well as in human cells with BPA exposure to explore module genes and construct the potential pathway for lymphomagenesis in response to BPA. This study provided evidence that BPA exposure resulted in disrupted cell cycle and DNA damage by activating CTNNB1, the initiator of the aberrant constructed CTNNB1-NFKB1-AR-IGF1-TWIST1 pathway, which may potentially lead to lymphomagenesis.

© 2021 The Authors.

Keywords: cancer; molecular biology

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. Br J Cancer. 2004 Jan 26;90(2):299-303 - PubMed
  2. Mol Cancer Res. 2005 Jun;3(6):345-53 - PubMed
  3. PLoS One. 2011;6(6):e21397 - PubMed
  4. Nature. 2009 Jun 4;459(7247):717-21 - PubMed
  5. J Hematol Oncol. 2015 Jun 06;8:63 - PubMed
  6. Environ Pollut. 2017 Nov;230:143-152 - PubMed
  7. Nucleic Acids Res. 2011 Aug;39(14):5813-25 - PubMed
  8. Cancer Epidemiol Biomarkers Prev. 2007 Mar;16(3):405-8 - PubMed
  9. Clin Cancer Res. 1999 May;5(5):1085-91 - PubMed
  10. Environ Toxicol Pharmacol. 2018 Jun;60:52-57 - PubMed
  11. Sheng Wu Gong Cheng Xue Bao. 2017 Nov 25;33(11):1791-1801 - PubMed
  12. DNA Repair (Amst). 2016 Jun;42:63-71 - PubMed
  13. Mol Cell Biol. 2001 Oct;21(20):6768-81 - PubMed
  14. Mol Cancer. 2014 Nov 18;13:249 - PubMed
  15. PLoS One. 2014 Oct 21;9(10):e110977 - PubMed
  16. Mol Neurobiol. 2017 Jul;54(5):3798-3812 - PubMed
  17. Biomed Pharmacother. 2014 Oct;68(8):1037-43 - PubMed
  18. Blood. 2006 Jan 1;107(1):265-76 - PubMed
  19. Mol Carcinog. 2016 May;55(5):431-9 - PubMed
  20. Mutat Res. 2016 Oct;809:1-15 - PubMed
  21. Environ Health Perspect. 2010 Aug;118(8):1055-70 - PubMed
  22. Int J Mol Sci. 2019 Dec 12;20(24): - PubMed
  23. J Biol Chem. 2001 Jul 13;276(28):26699-707 - PubMed
  24. Br J Haematol. 2020 Sep;190(6):e332-e335 - PubMed
  25. PLoS One. 2017 Apr 3;12(4):e0174809 - PubMed
  26. J Hematol Oncol. 2017 Feb 2;10(1):37 - PubMed
  27. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20405-10 - PubMed
  28. J Mol Endocrinol. 2014 Dec;53(3):345-53 - PubMed
  29. J Am Heart Assoc. 2014 Apr 22;3(2):e000492 - PubMed
  30. Oncogene. 2020 Apr;39(14):2934-2947 - PubMed
  31. Biotechnol Adv. 2018 Jan - Feb;36(1):311-327 - PubMed
  32. Int J Mol Cell Med. 2016 Winter;5(1):19-29 - PubMed
  33. Am J Pathol. 2009 Aug;175(2):489-99 - PubMed
  34. Reprod Toxicol. 2007 Aug-Sep;24(2):139-77 - PubMed
  35. Arch Toxicol. 2015 Aug;89(8):1371-81 - PubMed
  36. J Exp Med. 2001 Dec 17;194(12):1861-74 - PubMed
  37. J Clin Invest. 2006 Jan;116(1):80-9 - PubMed
  38. Gene. 2010 Nov 15;468(1-2):1-7 - PubMed
  39. Arch Toxicol. 2018 Apr;92(4):1453-1469 - PubMed
  40. CA Cancer J Clin. 2018 Jan;68(1):31-54 - PubMed
  41. Nucleic Acids Res. 2017 Jan 25;45(2):619-630 - PubMed
  42. Angiogenesis. 2020 Nov;23(4):515-529 - PubMed
  43. Oncotarget. 2016 Jul 5;7(27):41505-41526 - PubMed
  44. Oncogene. 2014 Dec 11;33(50):5655-65 - PubMed
  45. Leukemia. 2010 Aug;24(8):1487-97 - PubMed
  46. Toxicol Sci. 2003 Sep;75(1):40-6 - PubMed
  47. N Engl J Med. 2004 Aug 12;351(7):657-67 - PubMed
  48. Med Oncol. 2015 Jul;32(7):188 - PubMed
  49. Exp Hematol. 2017 May;49:34-38.e2 - PubMed
  50. Toxicol Sci. 2018 Aug 1;164(2):527-538 - PubMed
  51. Int J Mol Sci. 2020 Feb 07;21(3): - PubMed
  52. Leuk Lymphoma. 2019 Mar;60(3):795-804 - PubMed
  53. Br J Cancer. 2002 Jun 5;86(11):1770-5 - PubMed
  54. Chem Biol Interact. 2013 May 25;203(3):556-64 - PubMed
  55. Cancer Causes Control. 2019 May;30(5):489-499 - PubMed
  56. Int J Mol Med. 2012 May;29(5):883-90 - PubMed
  57. Int J Cancer. 2007;120 Suppl 12:1-39 - PubMed
  58. Environ Sci Pollut Res Int. 2019 Mar;26(9):8459-8467 - PubMed
  59. Cancer Cell. 2007 Dec;12(6):528-41 - PubMed
  60. Environ Health Perspect. 2011 Mar;119(3):390-6 - PubMed
  61. Toxicol In Vitro. 2015 Dec 25;30(1 Pt B):521-8 - PubMed
  62. Cell. 2020 Jul 9;182(1):226-244.e17 - PubMed
  63. Histopathology. 2013 Jan;62(2):326-33 - PubMed
  64. Cancer Res. 2011 Jul 15;71(14):4898-907 - PubMed
  65. PLoS One. 2011 Mar 07;6(3):e17487 - PubMed
  66. Rocz Panstw Zakl Hig. 2015;66(1):5-11 - PubMed
  67. Sci Rep. 2018 Jan 11;8(1):490 - PubMed
  68. Arch Biochem Biophys. 2015 May 1;573:52-8 - PubMed
  69. Mutat Res Genet Toxicol Environ Mutagen. 2019 Feb;838:28-36 - PubMed
  70. Mol Med Rep. 2012 Jun;5(6):1433-7 - PubMed
  71. Endocrinology. 2019 May 1;160(5):1234-1246 - PubMed
  72. Cancer Treat Res. 2015;165:1-25 - PubMed
  73. Oncotarget. 2015 Mar 30;6(9):6553-69 - PubMed
  74. Environ Health Perspect. 2015 Dec;123(12):1271-9 - PubMed
  75. Toxicol Sci. 2019 Aug 06;: - PubMed
  76. Arch Dermatol. 2005 Mar;141(3):333-8 - PubMed
  77. Cold Spring Harb Perspect Med. 2016 May 02;6(5): - PubMed
  78. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):391-6 - PubMed
  79. Arch Pathol Lab Med. 2003 Sep;127(9):1148-60 - PubMed
  80. Oncogene. 2016 Jul 21;35(29):3866-71 - PubMed
  81. Toxicol Lett. 2014 Sep 2;229(2):357-65 - PubMed
  82. Cancers (Basel). 2018 Jun 08;10(6): - PubMed
  83. DNA Repair (Amst). 2017 Mar;51:14-19 - PubMed
  84. Cell Stem Cell. 2014 Jul 3;15(1):37-50 - PubMed
  85. Toxicol In Vitro. 2020 Aug;66:104881 - PubMed
  86. Food Chem Toxicol. 2017 Feb;100:62-69 - PubMed
  87. Reprod Toxicol. 2016 Jan;59:167-82 - PubMed

Publication Types