Display options
Share it on

Front Neurosci. 2021 Aug 12;15:695179. doi: 10.3389/fnins.2021.695179. eCollection 2021.

Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence.

Frontiers in neuroscience

Ian S Curthoys, John Wally Grant, Christopher J Pastras, Laura Fröhlich, Daniel J Brown

Affiliations

  1. Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia.
  2. Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.
  3. The Menière's Research Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
  4. Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany.
  5. School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.

PMID: 34456671 PMCID: PMC8397526 DOI: 10.3389/fnins.2021.695179

Abstract

The evoked response to repeated brief stimuli, such as clicks or short tone bursts, is used for clinical evaluation of the function of both the auditory and vestibular systems. One auditory response is a neural potential - the Auditory Brainstem Response (ABR) - recorded by surface electrodes on the head. The clinical analogue for testing the otolithic response to abrupt sounds and vibration is the myogenic potential recorded from tensed muscles - the vestibular evoked myogenic potential (VEMP). VEMPs have provided clinicians with a long sought-after tool - a simple, clinically realistic indicator of the function of each of the 4 otolithic sensory regions. We review the basic neural evidence for VEMPs and discuss the similarities and differences between otolithic and cochlear receptors and afferents. VEMPs are probably initiated by sound or vibration selectively activating afferent neurons with irregular resting discharge originating from the unique type I receptors at a specialized region of the otolithic maculae (the striola). We review how changes in VEMP responses indicate the functional state of peripheral vestibular function and the likely transduction mechanisms allowing otolithic receptors and afferents to trigger such very short latency responses. In section "ELECTROPHYSIOLOGY" we show how cochlear and vestibular receptors and afferents have many similar electrophysiological characteristics [e.g., both generate microphonics, summating potentials, and compound action potentials (the vestibular evoked potential, VsEP)]. Recent electrophysiological evidence shows that the hydrodynamic changes in the labyrinth caused by increased fluid volume (endolymphatic hydrops), change the responses of utricular receptors and afferents in a way which mimics the changes in vestibular function attributed to endolymphatic hydrops in human patients. In section "MECHANICS OF OTOLITHS IN VEMPS TESTING" we show how the major VEMP results (latency and frequency response) follow from modeling the physical characteristics of the macula (dimensions, stiffness etc.). In particular, the structure and mechanical operation of the utricular macula explains the very fast response of the type I receptors and irregular afferents which is the very basis of VEMPs and these structural changes of the macula in Menière's Disease (MD) predict the upward shift of VEMP tuning in these patients.

Copyright © 2021 Curthoys, Grant, Pastras, Fröhlich and Brown.

Keywords: labyrinth; otolith; saccular; semicircular canal; utricular; vemp; vestibular

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Front Neurol. 2021 Feb 19;12:643634 - PubMed
  2. Nat Rev Neurol. 2016 Mar;12(3):135-49 - PubMed
  3. Exp Brain Res. 2011 May;210(3-4):607-21 - PubMed
  4. Am J Otol. 1997 May;18(3):355-60 - PubMed
  5. J Neurosci. 2007 Aug 1;27(31):8457-74 - PubMed
  6. J Neurosci. 1983 May;3(5):962-76 - PubMed
  7. Hear Res. 1993 Apr;66(2):225-32 - PubMed
  8. J Physiol. 2012 Jul 1;590(13):3091-101 - PubMed
  9. J Physiol. 2017 Feb 1;595(3):777-803 - PubMed
  10. Hear Res. 2013 Feb;296:96-106 - PubMed
  11. Otol Neurotol. 2012 Dec;33(9):1593-8 - PubMed
  12. J Physiol. 1949 Dec 15;110(1-2):1-17 - PubMed
  13. Otol Neurotol. 2019 Mar;40(3):e215-e224 - PubMed
  14. J Neurosci. 2020 Jun 10;40(24):4700-4714 - PubMed
  15. Hear Res. 2019 Mar 1;373:59-70 - PubMed
  16. Front Neurol. 2018 Jun 29;9:481 - PubMed
  17. J Neurol Neurosurg Psychiatry. 1994 Feb;57(2):190-7 - PubMed
  18. Neurology. 2007 Apr 10;68(15):1227-9 - PubMed
  19. Brain Res Bull. 2012 Oct 1;89(1-2):16-21 - PubMed
  20. Clin Neurophysiol. 2011 Mar;122(3):611-616 - PubMed
  21. J Physiol. 1971 Sep;217(2):473-96 - PubMed
  22. Front Neurol. 2020 Jul 21;11:695 - PubMed
  23. J Neurophysiol. 1995 Oct;74(4):1563-72 - PubMed
  24. Arch Otolaryngol Head Neck Surg. 1986 Aug;112(8):836-9 - PubMed
  25. Am J Physiol. 1956 Jun;185(3):595-600 - PubMed
  26. J Physiol. 1948 Jan 1;107(1):1-7 - PubMed
  27. Auris Nasus Larynx. 2016 Feb;43(1):10-20 - PubMed
  28. J Assoc Res Otolaryngol. 2020 Oct;21(5):409-423 - PubMed
  29. Electroencephalogr Clin Neurophysiol. 1992 May;82(5):377-86 - PubMed
  30. J Acoust Soc Am. 1977 Jan;61(1):133-49 - PubMed
  31. J Physiol. 1936 Feb 8;86(2):117-46 - PubMed
  32. Acta Otolaryngol. 1981 Nov-Dec;92(5-6):409-22 - PubMed
  33. Methods Enzymol. 2013;525:21-43 - PubMed
  34. Front Neurol. 2020 Oct 20;11:566895 - PubMed
  35. J Neurophysiol. 2019 Jun 1;121(6):2163-2180 - PubMed
  36. J Acoust Soc Am. 2018 May;143(5):2914 - PubMed
  37. Electroencephalogr Clin Neurophysiol. 1976 Mar;40(3):253-60 - PubMed
  38. Ann Otol Rhinol Laryngol. 1972 Jun;81(3):339-51 - PubMed
  39. J Vestib Res. 2001;11(1):33-42 - PubMed
  40. Exp Brain Res. 2006 Nov;175(2):256-67 - PubMed
  41. Ear Hear. 2016 May-Jun;37(3):365-73 - PubMed
  42. Hear Res. 1999 Oct;136(1-2):75-85 - PubMed
  43. Ear Hear. 2018 Mar/Apr;39(2):251-259 - PubMed
  44. J Vestib Res. 1998 May-Jun;8(3):253-72 - PubMed
  45. J Vestib Res. 2005;15(5-6):263-78 - PubMed
  46. J Assoc Res Otolaryngol. 2014 Aug;15(4):511-28 - PubMed
  47. J Exp Biol. 2008 Jun;211(Pt 11):1764-74 - PubMed
  48. Acta Otolaryngol. 1964 Nov;58:409-22 - PubMed
  49. J Acoust Soc Am. 1982 Jul;72(1):131-41 - PubMed
  50. Hear Res. 1989 Jan;37(2):123-7 - PubMed
  51. J Neurosci. 1992 Dec;12(12):4575-85 - PubMed
  52. J Acoust Soc Am. 1976 Nov;60(5):1132-9 - PubMed
  53. Hear Res. 2016 Jan;331:131-43 - PubMed
  54. Exp Brain Res. 2016 Mar;234(3):773-89 - PubMed
  55. Neurosci Lett. 1990 Aug 14;116(1-2):106-11 - PubMed
  56. Exp Brain Res. 2000 Feb;130(3):277-97 - PubMed
  57. AMA Arch Otolaryngol. 1955 Jan;61(1):16-28 - PubMed
  58. J Physiol. 2004 Nov 1;560(Pt 3):821-30 - PubMed
  59. Clin Neurophysiol. 2005 Mar;116(3):669-80 - PubMed
  60. Laryngoscope. 2006 Jun;116(6):987-92 - PubMed
  61. Exp Brain Res. 1977 Dec 19;30(4):587-600 - PubMed
  62. Hear Res. 1990 Sep;48(1-2):1-15 - PubMed
  63. J Neurophysiol. 1990 Apr;63(4):767-80 - PubMed
  64. J Neurol. 2016 Feb;263(2):210-220 - PubMed
  65. Brain Res. 1987 Oct 13;423(1-2):385-90 - PubMed
  66. Electroencephalogr Clin Neurophysiol. 1972 Jan;32(1):63-74 - PubMed
  67. Ear Hear. 1981 Jan-Feb;2(1):41-51 - PubMed
  68. Nat Commun. 2021 May 10;12(1):2604 - PubMed
  69. Hear Res. 2017 Sep;353:26-35 - PubMed
  70. J Neurophysiol. 2019 Mar 1;121(3):732-755 - PubMed
  71. J Vestib Res. 2009;19(3-4):95-110 - PubMed
  72. Clin Neurophysiol. 2020 Jul;131(7):1664-1671 - PubMed
  73. Phys Med Biol. 1957 Jan;1(3):225-42 - PubMed
  74. Hear Res. 2011 Oct;280(1-2):133-40 - PubMed
  75. J Neurophysiol. 2019 Jul 1;122(1):259-276 - PubMed
  76. Neurosci Res. 2011 Dec;71(4):315-27 - PubMed
  77. Ear Hear. 1993 Apr;14(2):85-94 - PubMed
  78. Front Syst Neurosci. 2017 Jan 24;11:2 - PubMed
  79. Exp Brain Res. 2011 May;210(3-4):347-52 - PubMed
  80. Exp Brain Res. 2016 Jan;234(1):141-9 - PubMed
  81. Otolaryngol Head Neck Surg. 2013 Jul;149(1):142-5 - PubMed
  82. J Acoust Soc Am. 2004 Nov;116(5):2996-3007 - PubMed
  83. J Neurophysiol. 2018 Mar 1;119(3):1045-1056 - PubMed
  84. Neurology. 1995 Oct;45(10):1927-9 - PubMed
  85. Hear Res. 2018 Dec;370:232-237 - PubMed
  86. Clin Neurophysiol. 2005 Aug;116(8):1938-48 - PubMed
  87. Acta Otolaryngol. 1977 Nov-Dec;84(5-6):352-60 - PubMed
  88. Proc Biol Sci. 1997 Apr 22;264(1381):611-21 - PubMed
  89. Hear Res. 2009 Apr;250(1-2):63-75 - PubMed
  90. Electroencephalogr Clin Neurophysiol. 1982 May;53(5):501-5 - PubMed
  91. J Exp Biol. 2011 Mar 1;214(Pt 5):862-70 - PubMed
  92. Hear Res. 2012 Oct;292(1-2):35-50 - PubMed
  93. Audiology. 1981;20(2):89-100 - PubMed
  94. J Appl Physiol (1985). 2017 Jun 1;122(6):1470-1484 - PubMed
  95. Acta Otolaryngol. 1951 Jun;38(3):262-73 - PubMed
  96. Acta Otolaryngol Suppl. 2009 Feb;(560):38-42 - PubMed
  97. Front Syst Neurosci. 2017 May 31;11:34 - PubMed
  98. Hear Res. 1990 Sep;48(1-2):31-6 - PubMed
  99. Acta Otolaryngol. 2020 May;140(5):366-372 - PubMed
  100. J Physiol. 2020 Feb;598(4):853-889 - PubMed
  101. Curr Opin Neurol. 2018 Feb;31(1):111-116 - PubMed
  102. Front Neurol. 2021 Jun 04;12:676723 - PubMed
  103. Ear Hear. 2013 Nov-Dec;34(6):799-805 - PubMed
  104. Otol Neurotol. 2017 Dec;38(10):e513-e521 - PubMed
  105. J Neurophysiol. 2020 Apr 1;123(4):1320-1331 - PubMed
  106. Arch Otolaryngol. 1971 Apr;93(4):388-96 - PubMed
  107. Psychol Rev. 1976 Jan;83(1):1-36 - PubMed
  108. Hear Res. 2017 Oct;354:38-47 - PubMed
  109. Otolaryngol Clin North Am. 2010 Oct;43(5):995-1009 - PubMed
  110. Otol Neurotol. 2019 Apr;40(4):e406-e414 - PubMed
  111. Laryngoscope. 2006 May;116(5):776-9 - PubMed
  112. Hear Res. 2010 Aug;267(1-2):12-26 - PubMed
  113. Sci Rep. 2021 Apr 19;11(1):8500 - PubMed
  114. Otol Neurotol. 2004 May;25(3):323-32 - PubMed
  115. Brain. 1996 Jun;119 ( Pt 3):741-53 - PubMed
  116. J Assoc Res Otolaryngol. 2002 Dec;3(4):444-56 - PubMed
  117. J Neurophysiol. 2011 Dec;106(6):2950-63 - PubMed
  118. Annu Rev Neurosci. 2011;34:501-34 - PubMed
  119. J Neurophysiol. 2008 Feb;99(2):718-33 - PubMed
  120. J Physiol. 1978 Nov;284:261-90 - PubMed
  121. Hear Res. 1989 May;39(1-2):177-88 - PubMed
  122. J Neurol Neurosurg Psychiatry. 1998 Nov;65(5):670-8 - PubMed
  123. Ann N Y Acad Sci. 2015 Apr;1343:49-57 - PubMed
  124. J Vestib Res. 2007;17(4):145-62 - PubMed
  125. Synapse. 2017 Jan;71(1):5-36 - PubMed
  126. Curr Opin Neurol. 2020 Feb;33(1):126-135 - PubMed
  127. Front Neurol. 2020 Oct 27;11:549817 - PubMed
  128. J Acoust Soc Am. 1974 Aug;56(2):562-70 - PubMed
  129. Front Neurol. 2020 Nov 20;11:612075 - PubMed
  130. Hear Res. 1998 Nov;125(1-2):1-16 - PubMed
  131. J Neurophysiol. 2010 Oct;104(4):2034-51 - PubMed
  132. Ann N Y Acad Sci. 2011 Sep;1233:231-41 - PubMed
  133. Hear Res. 2021 Jul;406:108259 - PubMed
  134. Exp Brain Res. 1995;103(1):174-8 - PubMed
  135. J Acoust Soc Am. 1974 Sep;56(3):929-34 - PubMed
  136. Science. 1980 Oct 3;210(4465):83-6 - PubMed
  137. Sci Rep. 2018 Jul 6;8(1):10257 - PubMed
  138. Acta Otolaryngol. 1969 Oct;68(4):350-62 - PubMed
  139. Acta Otolaryngol Suppl. 1995;520 Pt 1:120-3 - PubMed
  140. Clin Neurophysiol. 2008 Sep;119(9):2135-47 - PubMed
  141. Clin Neurophysiol. 2015 Oct;126(10):2004-13 - PubMed
  142. Hear Res. 2014 Dec;318:37-44 - PubMed
  143. Ear Hear. 2013 Nov-Dec;34(6):e65-73 - PubMed
  144. Ergeb Anat Entwicklungsgesch. 1969;42(1):1-113 - PubMed
  145. J Neurosci. 1994 Oct;14(10):6058-70 - PubMed
  146. J Exp Biol. 2007 Dec;210(Pt 23):4244-53 - PubMed
  147. Cell Tissue Res. 2015 Jul;361(1):129-58 - PubMed
  148. Electroencephalogr Clin Neurophysiol. 1991 Mar-Apr;80(2):140-5 - PubMed
  149. J Neurophysiol. 1967 Jul;30(4):769-93 - PubMed
  150. J Neurophysiol. 1990 Apr;63(4):791-804 - PubMed
  151. Clin Neurophysiol. 2010 Feb;121(2):132-44 - PubMed
  152. Neurology. 1992 Aug;42(8):1635-6 - PubMed
  153. Electroencephalogr Clin Neurophysiol. 1987 Jan;68(1):58-69 - PubMed
  154. Med Devices (Auckl). 2018 Sep 06;11:301-312 - PubMed
  155. Biophys J. 1979 Jun;26(3):499-506 - PubMed
  156. J Acoust Soc Am. 1999 Feb;105(2 Pt 1):799-810 - PubMed
  157. J Neurosci. 2011 Jul 6;31(27):10101-14 - PubMed
  158. Front Neurol. 2018 May 25;9:366 - PubMed
  159. J Assoc Res Otolaryngol. 2011 Feb;12(1):113-25 - PubMed
  160. Arch Otorhinolaryngol. 1979;224(1-2):61-70 - PubMed
  161. J Physiol. 1934 Jun 9;81(3):395-408 - PubMed
  162. Brain Behav Evol. 2014;83(2):162-75 - PubMed
  163. Handb Clin Neurol. 2019;160:451-464 - PubMed
  164. Aerosp Med. 1967 May;38(5):443-50 - PubMed
  165. Clin Neurophysiol. 2015 Jun;126(6):1234-1245 - PubMed
  166. Ear Hear. 2018 Jan/Feb;39(1):42-47 - PubMed
  167. J Am Acad Audiol. 2016 Oct;27(9):764-777 - PubMed
  168. Hum Brain Mapp. 2015 Nov;36(11):4346-4360 - PubMed
  169. Hear Res. 1986;24(1):1-15 - PubMed
  170. J Acoust Soc Am. 1984 Jan;75(1):202-8 - PubMed
  171. J Physiol. 1973 Feb;228(3):649-80 - PubMed
  172. Am J Otolaryngol. 1989 Sep-Oct;10(5):327-35 - PubMed
  173. Biophys J. 2017 Sep 5;113(5):1133-1149 - PubMed
  174. J Neurophysiol. 1995 Apr;73(4):1484-502 - PubMed
  175. J Neurophysiol. 1954 Mar;17(2):97-122 - PubMed
  176. Clin Exp Pharmacol Physiol. 2014 May;41(5):371-80 - PubMed
  177. Brain Res. 1977 Feb 25;122(3):545-50 - PubMed
  178. Clin Neurophysiol. 2006 May;117(5):1145-53 - PubMed
  179. Exp Brain Res. 2017 Apr;235(4):957-972 - PubMed
  180. Clin Neurophysiol Pract. 2019 Feb 26;4:47-68 - PubMed
  181. Proc Natl Acad Sci U S A. 1930 May 15;16(5):344-50 - PubMed

Publication Types