Display options
Share it on

Neurogastroenterol Motil. 2021 Aug 25;e14248. doi: 10.1111/nmo.14248. Epub 2021 Aug 25.

Age-related differences of γ-aminobutyric acid (GABA)ergic transmission in human colonic smooth muscle.

Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society

Maria Grazia Zizzo, Adele Cicio, Stefania Raimondo, Riccardo Alessandro, Rosa Serio

Affiliations

  1. Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze,ed 16, Palermo, 90128, Italy.
  2. ATeN (Advanced Technologies Network) Center, University of Palermo, Viale delle Scienze, ed 18, Palermo, 90128, Italy.
  3. Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo, 90133, Italy.

PMID: 34432349 DOI: 10.1111/nmo.14248

Abstract

BACKGROUND: Enteric neurons undergo to functional changes during aging. We investigated the possible age-associated differences in enteric γ-aminobutyric acid (GABA)ergic transmission evaluating function and distribution of GABAergic receptors in human colon.

METHODS: Mechanical responses to GABA and GABA receptor agonists on slow phasic contractions were examined in vitro as changes in isometric tension in colonic muscle strips from young (<65 years old) and aged patients (>65 years old). GABAergic receptor expression was assessed by quantitative RT-PCR.

KEY RESULTS: In both preparations GABA induced an excitatory effect, consisting in an increase in the basal tone, antagonized by the GABAA receptor antagonist, bicuculline, and potentiated by phaclofen, GABAB receptor antagonist.Tetrodotoxin (TTX) and atropine-sensitive contractile responses to GABA and GABAA receptor agonist, muscimol, were more pronounced in old compared to young subjects. Baclofen, GABAB receptor agonist, induced a TTX-sensitive reduction of the amplitude of the spontaneous. Nω-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor abolished the inhibitory responses in old preparations, but a residual responses persisted in young preparations, which in turn was abolished by suramin, purinergic receptor antagonist. α3-GABAA receptor subunit expression tends to change in an age-dependent manner.

CONCLUSIONS AND INFERENCES: Our results reveal age-related differences in GABAergic transmission in human colon. At all the age tested GABA regulates muscular contractility modulating the activity of the intrinsic neurons. Activation of GABAA receptor, through acetylcholine release, induces contraction, which increases in amplitude with age. GABAB receptor activation leads to neural release of NO and purines, being a loss of purinergic-component in aged group.

© 2021 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

Keywords: Aging; GABA; GABAergic receptors; GABAA receptor subunit; intestinal motility

References

  1. World Health Organisation. 10 facts on ageing and the life course. http://www.who.int/features/factfiles/ageing/ageing_facts/en/index.html. - PubMed
  2. De Vries P, Soret R, Suply E, Heloury Y, Neunlist M. Postnatal development of myenteric neurochemical phenotype and impact on neuromuscular transmission in the rat colon. Am J Physiol - Gastrointest Liver Physiol. 2010;299(2):G539-G547. https://doi.org/10.1152/ajpgi.00092.2010 - PubMed
  3. Foong JPP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol. 2012;590(10):2375-2390. https://doi.org/10.1113/jphysiol.2011.225938 - PubMed
  4. Zizzo MG, Cavallaro G, Auteri M, et al. Postnatal development of the dopaminergic signaling involved in the modulation of intestinal motility in mice. Pediatr Res. 2016;80(3):440-447. https://doi.org/10.1038/pr.2016.91 - PubMed
  5. Giaroni C, De Ponti F, Cosentino M, Lecchini S, Frigo G. Plasticity in the enteric nervous system. Gastroenterology. 1999;117(6):1438-1458. https://doi.org/10.1016/S0016-5085(99)70295-7 - PubMed
  6. Belai A, Burnstock G. Distribution and colocalization of nitric oxide synthase and calretinin in myenteric neurons of developing, aging, and Crohn’s disease human small intestine. Dig Dis Sci. 1999;44(8):1579-1587. https://doi.org/10.1023/A:1026658826010 - PubMed
  7. Broad J, Kung VWS, Palmer A, et al. Changes in neuromuscular structure and functions of human colon during ageing are region-dependent. Gut. 2019;68(7):1210-1223. https://doi.org/10.1136/gutjnl-2018-316279 - PubMed
  8. Phillips RJ, Powley TL. Innervation of the gastrointestinal tract: Patterns of aging. Auton Neurosci Basic Clin. 2007;136(1-2):1-19. https://doi.org/10.1016/j.autneu.2007.04.005 - PubMed
  9. Wade PR. Age-related changes in the enteric nervous system. Am J Physiol-Gastrointest Liver Physiol. 2002;283(3):G489-G495. https://doi.org/10.1152/ajpgi.00091.2002 - PubMed
  10. Bernard CE, Gibbons SJ, Gomez-Pinilla PJ, et al. Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil. 2009;21(7) :746-e46. https://doi.org/10.1111/j.1365-2982.2008.01245.x - PubMed
  11. Curtis DR, Johnston GA. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69:97-188. https://doi.org/10.1007/3-540-06498-2_3 - PubMed
  12. Avoli M, Krnjević K. The long and winding road to gamma-amino-butyric acid as neurotransmitter. Can J Neurol Sci. 2015;43(2):219-226. https://doi.org/10.1017/cjn.2015.333 - PubMed
  13. Fritschy JM, Panzanelli P. GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci. 2014;39(11):1845-1865. https://doi.org/10.1111/ejn.12534 - PubMed
  14. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA A receptors. Nat Rev Neurosci. 2005;6(3):215-229. https://doi.org/10.1038/nrn1625 - PubMed
  15. Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABA A receptor subtypes. Nat Rev Drug Discov. 2011;10(9):685-697. https://doi.org/10.1038/nrd3502 - PubMed
  16. Uusi-Oukari M, Korpi ER. Regulation of GABAA receptor subunit expression by pharmacological agents. Pharmacol Rev. 2010;62(1):97-135. https://doi.org/10.1124/pr.109.002063 - PubMed
  17. Am S, Jd W. Histamine H(2) receptor activated chloride conductance in myenteric neurons from guinea pig small intestine. J Neurophysiol. 2000;83(4):1809-1816. https://doi.org/10.1152/JN.2000.83.4.1809 - PubMed
  18. Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res. 2015;93:11-21. https://doi.org/10.1016/j.phrs.2014.12.001 - PubMed
  19. Zeiter DK, Li X, Broussard DL. Identification of the GABAA receptor α-subunit mRNA in rat intestine. Mol Brain Res. 1996;39(1-2):241-244. https://doi.org/10.1016/0169-328X(96)00077-0 - PubMed
  20. Castelli MP, Ingianni A, Stefanini E, Gessa GL. Distribution of GABA(B) receptor mRNAs in the rat brain and peripheral organs. Life Sci. 1999;64(15):1321-1328. https://doi.org/10.1016/S0024-3205(99)00067-3 - PubMed
  21. Fletcher EL, Clark MJ, Furness JB. Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell Tissue Res. 2002;308(3):339-346. https://doi.org/10.1007/s00441-002-0566-3 - PubMed
  22. Krantis A. GABA in the mammalian enteric nervous system. News Physiol Sci. 2000;15(6):284-290. https://doi.org/10.1152/physiologyonline.2000.15.6.284 - PubMed
  23. Seifi M, Swinny JD. Developmental and age-dependent plasticity of GABAA receptors in the mouse colon: Implications in colonic motility and inflammation. Auton Neurosci Basic Clin. 2019;e42959. - PubMed
  24. Persson PB. Good publication practice in physiology 2019. Acta Physiol. 2019;227(4):e13405. https://doi.org/10.1111/apha.13405 - PubMed
  25. Gagnon DJ, Devroede G, Belisle S. Excitatory effects of adrenaline upon isolated preparations of human colon. Gut. 1972;13(8):654-657. https://doi.org/10.1136/gut.13.8.654 - PubMed
  26. Bennett A, Stockley HL. The intrinsic innervation of the human alimentary tract and its relation to function. Gut. 1975;16(6):443-453. https://doi.org/10.1136/gut.16.6.443 - PubMed
  27. Sanger GJ, Broad J, Kung V, Knowles CH. Translational neuropharmacology: the use of human isolated gastrointestinal tissues. Br J Pharmacol. 2013;168(1):28-43. https://doi.org/10.1111/j.1476-5381.2012.02198.x - PubMed
  28. Mastropaolo M, Zizzo MG, Auteri M, et al. Activation of angiotensin II type 1 receptors and contractile activity in human sigmoid colon in vitro. Acta Physiol. 2015;215(1):37-45. https://doi.org/10.1111/apha.12538 - PubMed
  29. Wiskur B, Meerveld BG-V. The aging colon: the role of enteric neurodegeneration in constipation. Curr Gastroenterol Rep. 2010;12(6):507-512. https://doi.org/10.1007/s11894-010-0139-7 - PubMed
  30. Seifi M, Brown JF, Mills J, et al. Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J Neurosci. 2014;34(31):10361-10378. https://doi.org/10.1523/JNEUROSCI.0441-14.2014 - PubMed
  31. Ma X, Sun Q, Sun X, et al. Activation of GABAA receptors in colon epithelium exacerbates acute colitis. Front Immunol. 2018;9(5):987. https://doi.org/10.3389/fimmu.2018.00987 - PubMed
  32. Aggarwal S, Ahuja V, Paul J. Dysregulation of GABAergic signalling contributes in the pathogenesis of diarrheapredominant irritable bowel syndrome. J Neurogastroenterol Motil. 2018;24(3):422-430. https://doi.org/10.5056/jnm17100 - PubMed
  33. Song L, Du A, Xiong Y, et al. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells. Tumor Biol. 2016;37(11):14885-14894. https://doi.org/10.1007/s13277-016-5367-5 - PubMed
  34. Gallagher P, O’Mahony D. Constipation in old age. Best Pract Res Clin Gastroenterol. 2009;23(6):875-887. https://doi.org/10.1016/j.bpg.2009.09.001 - PubMed
  35. Rao SSC, Go JT. Update on the management of constipation in the elderly: new treatment options. Clin Interv Aging. 2010;5:163-171. https://doi.org/10.2147/cia.s8100 - PubMed
  36. Chatoor DR, Taylor SJ, Cohen CRG, Emmanuel AV. Faecal incontinence. Br J Surg. 2007;94(2):134-144. https://doi.org/10.1002/bjs.5676 - PubMed
  37. Franceschi M, Di Mario F, Leandro G, Maggi S, Pilotto A. Acid-related disorders in the elderly. Best Pract Res Clin Gastroenterol. 2009;23(6):839-848. https://doi.org/10.1016/j.bpg.2009.10.004 - PubMed
  38. Camilleri M, Cowen T, Koch TR. Enteric neurodegeneration in ageing. Neurogastroenterol Motil. 2008;20(4):418-429. https://doi.org/10.1111/j.1365-2982.2008.01134.x - PubMed
  39. De Souza RR, Moratelli HB, Borges N, Liberti EA. Age-induced nerve cell loss in the myenteric plexus of the small intestine in man. Gerontology. 1993;39(4):183-188. https://doi.org/10.1159/000213532 - PubMed
  40. Gomes OA, De Souza RR, Liberti EA. A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology. 1997;43(4):210-217. https://doi.org/10.1159/000213852 - PubMed
  41. Wade PR, Cowen T. Neurodegeneration: a key factor in the ageing gut. Neurogastroenterol Motil. 2004;16(S1):19-23. https://doi.org/10.1111/j.1743-3150.2004.00469.x - PubMed
  42. Powell AR, Reddix RA. Differential effects of maturation on nicotinic- and muscarinic receptor-induced ion secretion in guinea pig distal colon. Proc Soc Exp Biol Med. 2000;224(3):147-151. https://doi.org/10.1046/j.1525-1373.2000.22413.x - PubMed
  43. Garrido-Gil P, Dominguez-Meijide A, Moratalla R, Guerra MJ, Labandeira-Garcia JL. Aging-related dysregulation in enteric dopamine and angiotensin system interactions: implications for gastrointestinal dysfunction in the elderly. Oncotarget. 2018;9(13):10834-10846. https://doi.org/10.18632/oncotarget.24330 - PubMed
  44. Seifi M, Swinny JD. Developmental and age-dependent plasticity of GABAA receptors in the mouse colon: Implications in colonic motility and inflammation. Auton Neurosci Basic Clin. 2019;221:102579. https://doi.org/10.1016/j.autneu.2019.102579 - PubMed
  45. Tsai LH, Tsai W, Wu JY. Action of myenteric GABAergic neurons in the guinea pig stomach. Neurochem Int. 1993;23(2):187-193. https://doi.org/10.1016/0197-0186(93)90096-N - PubMed
  46. Zizzo MG, Mulè F, Serio R. Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: role of GABAA and GABAC receptors. Neuropharmacology. 2007;52(8) :1685-1690. https://doi.org/10.1016/j.neuropharm.2007.03.016 - PubMed
  47. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry. 2008;165(4):479-489. https://doi.org/10.1176/appi.ajp.2007.07081223 - PubMed
  48. Duncan MJ, Congleton MR. Neural mechanisms mediating circadian phase resetting by activation of 5-HT7 receptors in the dorsal raphe: Roles of GABAergic and glutamatergic neurotransmission. Brain Res. 2010;1366:110-119. https://doi.org/10.1016/j.brainres.2010.09.103 - PubMed
  49. Fillman SG, Duncan CE, Webster MJ, Elashoff M, Weickert CS. Developmental co-regulation of the β and γ GABAA receptor subunits with distinct α subunits in the human dorsolateral prefrontal cortex. Int J Dev Neurosci. 2010;28(6):513-519. https://doi.org/10.1016/j.ijdevneu.2010.05.004 - PubMed
  50. Rissman RA, Mobley WC. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J Neurochem. 2011;117(4):613-622. https://doi.org/10.1111/j.1471-4159.2011.07237.x - PubMed
  51. Egawa K, Fukuda A. Pathophysiological power of improper tonic GABAAconductances in mature and immature models. Front Neural Circuits. 2013;7(9):170. https://doi.org/10.3389/fncir.2013.00170 - PubMed
  52. Rotondo A, Serio R, Mulè F. Functional evidence for different roles of GABAA and GABAB receptors in modulating mouse gastric tone. Neuropharmacology. 2010;58(7):1033-1037. https://doi.org/10.1016/j.neuropharm.2010.01.004 - PubMed
  53. Mendu SK, Bhandage A, Jin Z, Birnir B. Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes. Tasken K, ed. PLoS One. 2012;7(8):e42959. https://doi.org/10.1371/journal.pone.0042959 - PubMed

Publication Types

Grant support