Display options
Share it on

Front Immunol. 2021 Aug 19;12:702345. doi: 10.3389/fimmu.2021.702345. eCollection 2021.

Binding of Rap1 and Riam to Talin1 Fine-Tune β2 Integrin Activity During Leukocyte Trafficking.

Frontiers in immunology

Thomas Bromberger, Sarah Klapproth, Ina Rohwedder, Jasmin Weber, Robert Pick, Laura Mittmann, Soo Jin Min-Weißenhorn, Christoph A Reichel, Christoph Scheiermann, Markus Sperandio, Markus Moser

Affiliations

  1. Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
  2. Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
  3. Walter Brendel Center of Experimental Medicine (WBex), Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany.
  4. Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland.
  5. Walter Brendel Centre of Experimental Medicine (WBex), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.
  6. Department of Otorhinolaryngology, Ludwig-Maximilians-Universität München, Munich, Germany.
  7. Transgenic Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany.

PMID: 34489950 PMCID: PMC8417109 DOI: 10.3389/fimmu.2021.702345

Abstract

β2 integrins mediate key processes during leukocyte trafficking. Upon leukocyte activation, the structurally bent β2 integrins change their conformation towards an extended, intermediate and eventually high affinity conformation, which mediate slow leukocyte rolling and firm arrest, respectively. Translocation of talin1 to integrin adhesion sites by interactions with the small GTPase Rap1 and the Rap1 effector Riam precede these processes. Using Rap1 binding mutant talin1 and Riam deficient mice we show a strong Riam-dependent T cell homing process to lymph nodes in adoptive transfer experiments and by intravital microscopy. Moreover, neutrophils from compound mutant mice exhibit strongly increased rolling velocities to inflamed cremaster muscle venules compared to single mutants. Using Hoxb8 cell derived neutrophils generated from the mutant mouse strains, we show that both pathways regulate leukocyte rolling and adhesion synergistically by inducing conformational changes of the β2 integrin ectodomain. Importantly, a simultaneous loss of both pathways results in a rolling phenotype similar to talin1 deficient neutrophils suggesting that β2 integrin regulation primarily occurs

Copyright © 2021 Bromberger, Klapproth, Rohwedder, Weber, Pick, Mittmann, Min-Weißenhorn, Reichel, Scheiermann, Sperandio and Moser.

Keywords: Rap1; Riam; integrin activation; leukocyte adhesion; leukocyte rolling; leukocyte trafficking; talin

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Exp Med. 2021 Feb 1;218(2): - PubMed
  2. Blood. 2010 Jul 29;116(4):617-24 - PubMed
  3. Nat Methods. 2013 Aug;10(8):795-803 - PubMed
  4. J Cell Biol. 2019 Jun 3;218(6):1799-1809 - PubMed
  5. J Biol Chem. 2009 May 29;284(22):15097-106 - PubMed
  6. J Biol Chem. 2012 Apr 20;287(17):13799-812 - PubMed
  7. Blood. 2015 Jan 8;125(2):219-22 - PubMed
  8. Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174 - PubMed
  9. Nat Rev Mol Cell Biol. 2013 Aug;14(8):503-17 - PubMed
  10. Microcirculation. 2004 Apr-May;11(3):239-47 - PubMed
  11. J Cell Sci. 2018 Dec 18;131(24): - PubMed
  12. Exp Cell Res. 2006 Oct 1;312(16):3142-51 - PubMed
  13. Blood. 2015 Dec 17;126(25):2695-703 - PubMed
  14. Cell Res. 2012 Nov;22(11):1533-45 - PubMed
  15. Blood. 2012 May 3;119(18):4275-82 - PubMed
  16. Nat Commun. 2015 Sep 30;6:8492 - PubMed
  17. Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10339-10344 - PubMed
  18. Blood Adv. 2018 Sep 25;2(18):2358-2368 - PubMed
  19. Immunity. 2007 Jun;26(6):773-83 - PubMed
  20. Microvasc Res. 1973 May;5(3):384-94 - PubMed
  21. Dev Cell. 2004 Oct;7(4):585-95 - PubMed
  22. J Immunol. 2018 Sep 15;201(6):1748-1764 - PubMed
  23. J Cell Sci. 2017 Aug 1;130(15):2435-2446 - PubMed
  24. Nat Commun. 2017 Nov 23;8(1):1744 - PubMed
  25. Blood. 2020 Sep 3;136(10):1180-1190 - PubMed
  26. BMC Cell Biol. 2016 Jan 07;17:1 - PubMed
  27. J Struct Biol. 2013 Oct;184(1):21-32 - PubMed
  28. Nat Commun. 2014 Dec 18;5:5880 - PubMed
  29. J Biol Chem. 2013 Mar 22;288(12):8238-8249 - PubMed
  30. Curr Biol. 2006 Sep 19;16(18):1796-806 - PubMed
  31. Blood. 2010 Apr 15;115(15):3118-27 - PubMed
  32. Blood. 2015 Dec 17;126(25):2704-12 - PubMed
  33. J Biol Chem. 2009 Feb 20;284(8):5119-27 - PubMed
  34. Nat Rev Immunol. 2007 Sep;7(9):678-89 - PubMed
  35. EMBO J. 2010 Mar 17;29(6):1069-80 - PubMed
  36. Mol Biol Cell. 2013 May;24(9):1354-62 - PubMed
  37. Science. 2009 May 15;324(5929):895-9 - PubMed
  38. Blood. 2018 Dec 27;132(26):2754-2762 - PubMed
  39. J Cell Sci. 2019 Nov 1;132(21): - PubMed
  40. Elife. 2018 Sep 06;7: - PubMed

Publication Types