Display options
Share it on

Front Cell Dev Biol. 2021 Aug 19;9:692020. doi: 10.3389/fcell.2021.692020. eCollection 2021.

Interactions Between Genes From Aging Pathways May Influence Human Lifespan and Improve Animal to Human Translation.

Frontiers in cell and developmental biology

Svetlana Ukraintseva, Matt Duan, Konstantin Arbeev, Deqing Wu, Olivia Bagley, Arseniy P Yashkin, Galina Gorbunova, Igor Akushevich, Alexander Kulminski, Anatoliy Yashin

Affiliations

  1. Biodemography of Aging Research Unit, Duke University, Durham, NC, United States.

PMID: 34490245 PMCID: PMC8417405 DOI: 10.3389/fcell.2021.692020

Abstract

A major goal of aging research is identifying genetic targets that could be used to slow or reverse aging - changes in the body and extend limits of human lifespan. However, majority of genes that showed the anti-aging and pro-survival effects in animal models were not replicated in humans, with few exceptions. Potential reasons for this lack of translation include a highly conditional character of genetic influence on lifespan, and its heterogeneity, meaning that better survival may be result of not only activity of individual genes, but also gene-environment and gene-gene interactions, among other factors. In this paper, we explored associations of genetic interactions with human lifespan. We selected candidate genes from well-known aging pathways (IGF1/FOXO growth signaling, P53/P16 apoptosis/senescence, and mTOR/SK6 autophagy and survival) that jointly decide on outcomes of cell responses to stress and damage, and so could be prone to interactions. We estimated associations of pairwise statistical epistasis between SNPs in these genes with survival to age 85+ in the Atherosclerosis Risk in Communities study, and found significant (FDR < 0.05) effects of interactions between SNPs in

Copyright © 2021 Ukraintseva, Duan, Arbeev, Wu, Bagley, Yashkin, Gorbunova, Akushevich, Kulminski and Yashin.

Keywords: aging genes; aging pathways; animal to human translation; genetic interactions; heterogeneity of longevity; human lifespan; statistical epistasis; stress response

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Exp Gerontol. 2007 Jan-Feb;42(1-2):90-8 - PubMed
  2. Nat Protoc. 2010 Sep;5(9):1564-73 - PubMed
  3. Aging (Albany NY). 2017 Dec 14;9(12):2467-2468 - PubMed
  4. Bipolar Disord. 2011 Feb;13(1):41-51 - PubMed
  5. BMC Genomics. 2017 Nov 14;18(Suppl 8):803 - PubMed
  6. Biochim Biophys Acta Mol Basis Dis. 2019 Jul 1;1865(7):1718-1744 - PubMed
  7. Aging Cell. 2014 Aug;13(4):669-78 - PubMed
  8. Nature. 2010 Mar 25;464(7288):504-12 - PubMed
  9. Int J Mol Sci. 2020 Nov 22;21(22): - PubMed
  10. J Gerontol A Biol Sci Med Sci. 2010 Dec;65(12):1285-99 - PubMed
  11. NPJ Aging Mech Dis. 2016 Jun 02;2:16010 - PubMed
  12. Bioinformatics. 2009 Dec 15;25(24):3275-81 - PubMed
  13. Int J Cancer. 2016 Oct 15;139(8):1894-903 - PubMed
  14. Crit Rev Eukaryot Gene Expr. 2015;25(1):59-75 - PubMed
  15. Eur J Hum Genet. 2013 May;21(5):574-7 - PubMed
  16. Exp Gerontol. 2014 Sep;57:41-6 - PubMed
  17. Mech Ageing Dev. 2018 Oct;175:24-34 - PubMed
  18. PLoS One. 2008;3(10):e3583 - PubMed
  19. Age (Dordr). 2013 Feb;35(1):235-49 - PubMed
  20. Aging Cell. 2014 Feb;13(1):19-28 - PubMed
  21. Cold Spring Harb Perspect Med. 2015 Nov 02;5(11): - PubMed
  22. Age (Dordr). 2013 Apr;35(2):343-52 - PubMed
  23. Front Biosci (Landmark Ed). 2021 Jan 1;26:50-96 - PubMed
  24. Cell Cycle. 2014;13(17):2671-3 - PubMed
  25. J Inherit Metab Dis. 2002 May;25(3):197-206 - PubMed
  26. J Biol Chem. 2012 Mar 9;287(11):8384-97 - PubMed
  27. Int J Methods Psychiatr Res. 2018 Jun;27(2):e1608 - PubMed
  28. Cancer Res. 2007 Apr 1;67(7):3043-53 - PubMed
  29. PLoS One. 2010 Feb 15;5(2):e9199 - PubMed
  30. Cell. 2019 Mar 21;177(1):200-220 - PubMed
  31. Cell. 2019 Apr 18;177(3):622-638.e22 - PubMed
  32. Oncogene. 2010 Dec 2;29(48):6367-77 - PubMed
  33. Aging Cell. 2018 Jun;17(3):e12755 - PubMed
  34. Nat Metab. 2020 Aug;2(8):663-672 - PubMed
  35. Genes Dev. 2006 Feb 1;20(3):267-75 - PubMed
  36. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13987-92 - PubMed
  37. J Am Geriatr Soc. 2012 Feb;60(2):323-7 - PubMed
  38. Exp Gerontol. 2016 Jun;78:57-61 - PubMed
  39. Methods Mol Biol. 2017;1613:101-124 - PubMed
  40. Nature. 2013 Jan 17;493(7432):338-45 - PubMed
  41. PLoS One. 2013 Jul 30;8(7):e69178 - PubMed
  42. Transl Oncol. 2012 Feb;5(1):1-9 - PubMed
  43. PLoS One. 2014 Aug 20;9(8):e105595 - PubMed
  44. Front Genet. 2018 Nov 27;9:586 - PubMed
  45. Circ Res. 2005 Mar 4;96(4):412-8 - PubMed
  46. Front Oncol. 2016 Jun 23;6:159 - PubMed
  47. Circ Cardiovasc Genet. 2010 Jun;3(3):267-75 - PubMed
  48. Trends Endocrinol Metab. 2013 Apr;24(4):184-9 - PubMed
  49. Nat Cell Biol. 2008 Apr;10(4):460-7 - PubMed
  50. Transl Psychiatry. 2016 Aug 30;6(8):e876 - PubMed
  51. Mech Ageing Dev. 2021 Mar;194:111418 - PubMed
  52. Alzheimers Res Ther. 2018 Feb 08;10(1):17 - PubMed
  53. Biol Psychiatry. 2009 Oct 15;66(8):804-7 - PubMed
  54. Biogerontology. 2016 Feb;17(1):109-27 - PubMed
  55. Mech Ageing Dev. 2016 Apr;155:10-21 - PubMed

Publication Types