Display options
Share it on

Pediatr Pulmonol. 2021 Dec;56(12):3908-3915. doi: 10.1002/ppul.25663. Epub 2021 Sep 27.

Requirement of respiratory support in acute bronchiolitis in infants is linked to endothelial and neutrophil activation.

Pediatric pulmonology

Amadu Juliana, Frans B Plötz, Niek Achten, Anita Bultman, Rianne M Jongman, Matijs van Meurs, Jan C Wilschut, Rens Zonneveld

Affiliations

  1. Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname.
  2. Department of Pediatrics, Tergooi Hospitals, Hilversum, The Netherlands.
  3. Emma Children's Hospital, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
  4. Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  5. Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  6. Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  7. Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

PMID: 34491635 DOI: 10.1002/ppul.25663

Abstract

BACKGROUND: Evidence shows that activation of pulmonary vascular endothelium and neutrophils are involved in the pathophysiology of acute bronchiolitis. We hypothesized that levels of markers of endothelial activation and leukocyte counts are associated with requirement and duration of respiratory support.

METHODS: Thirty-four infants with bronchiolitis and eight controls were included. Nasopharyngeal swabs and blood samples were taken at admission. Serum levels of Angiopoietin (Ang)-1, Ang-2, sP-selectin, sE-selectin, vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), and leukocyte counts were measured. For univariate analysis, bronchiolitis cases were grouped into two groups, namely those not requiring and those requiring any form of respiratory support. To control for known risk factors for poor outcome (i.e., age, prematurity, and congenital heart disease), and for days post symptom onset, linear regression analysis was performed with duration of any type of respiratory support in days.

RESULTS: Ang-2 levels, Ang-2/Ang-1 ratios, sE-selectin levels, immature neutrophil count, and neutrophil/lymphocyte ratio (NLR) were higher in acute bronchiolitis versus controls. Ang-2, and NLR levels were significantly higher, and lymphocyte counts significantly lower, in infants that required respiratory support versus those that did not. Ang-2 levels (β: .32, 95% confidence interval [CI]: 0.19-1.19) and NLR (β: .68, 95% CI: 0.17-1.19) were positive predictors for the duration of respiratory support.

CONCLUSIONS: Markers of endothelial and neutrophil activation are associated with respiratory support for acute bronchiolitis. Admission Ang-2 levels and NLR may be promising markers to determine requirement of respiratory support and deserve further study.

© 2021 Wiley Periodicals LLC.

Keywords: acute bronchiolitis; endothelium; infants; neutrophils; severity

References

  1. Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545-1555. https://doi.org/10.1016/S0140-6736(10)60206-1 - PubMed
  2. Fretzayas A, Moustaki M. Etiology and clinical features of viral bronchiolitis in infancy. World J Pediatr. 2017;13(4):293-299. https://doi.org/10.1007/s12519-017-0031-8 - PubMed
  3. Souza AP, Leitão LA, Luisi F, et al. Lack of association between viral load and severity of acute bronchiolitis in infants. J Bras Pneumol. 2016;42(4):261-265. https://doi.org/10.1590/S1806-37562015000000241 - PubMed
  4. Smith PK, Wang S-ZZ, Dowling KD, Forsyth KD. Leucocyte populations in respiratory syncytial virus-induced bronchiolitis. J Paediatr Child Health. 2001;37(2):146-151. https://doi.org/10.1046/j.1440-1754.2001.00618.x - PubMed
  5. Welliver TP, Reed JL, Welliver RC. Respiratory syncytial virus and influenza virus infections: observations from tissues of fatal infant cases. Pediatr Infect Dis J. 2008;27(10 suppl):S92-S96. https://doi.org/10.1097/INF.0b013e318168b706 - PubMed
  6. Cavallaro EC, Liang K-K, Lawrence MD, Forsyth KD, Dixon D-L. Neutrophil infiltration and activation in bronchiolitic airways are independent of viral etiology. Pediatr Pulmonol. 2017;52(2):238-246. https://doi.org/10.1002/ppul.23514 - PubMed
  7. Juliana A, Zonneveld R, Plötz FBFB, van Meurs M, Wilschut J. Neutrophil-endothelial interactions in respiratory syncytial virus bronchiolitis: an understudied aspect with a potential for prediction of severity of disease. J Clin Virol. 2020;123:104258. https://doi.org/10.1016/j.jcv.2019.104258 - PubMed
  8. Behera AK, Matsuse H, Kumar M, Kong X, Lockey RF, Mohapatra SS. Blocking intercellular adhesion molecule-1 on human epithelial cells decreases respiratory syncytial virus infection. Biochem Biophys Res Commun. 2001;280(1):188-195. https://doi.org/10.1006/bbrc.2000.4093 - PubMed
  9. Chang C-HH, Huang Y, Anderson R. Activation of vascular endothelial cells by IL-1alpha released by epithelial cells infected with respiratory syncytial virus. Cell Immunol. 2003;221(1):37-41. https://doi.org/10.1016/S0008-8749(03)00058-3 - PubMed
  10. Arnold R, König W. Respiratory syncytial virus infection of human lung endothelial cells enhances selectively intercellular adhesion molecule-1 expression. J Immunol. 2005;174(11):7359-7367. https://doi.org/10.4049/jimmunol.174.11.7359 - PubMed
  11. Marguet C, Bocquel N, Benichou J, et al. Neutrophil but not eosinophil inflammation is related to the severity of a first acute epidemic bronchiolitis in young infants. Pediatr Allergy Immunol. 2008;19(2):157-165. https://doi.org/10.1111/j.1399-3038.2007.00600.x - PubMed
  12. Abu-Harb M, Bell F, Finn A, et al. IL-8 and neutrophil elastase levels in the respiratory tract of infants with RSV bronchiolitis. Eur Respir J. 1999;14(1):139-143. http://www.ncbi.nlm.nih.gov/pubmed/10489841 - PubMed
  13. Emboriadou M, Hatzistilianou M, Magnisali Ch, et al. Human neutrophil elastase in RSV bronchiolitis. Ann Clin Lab Sci. 2007;37(1):79-84. http://www.annclinlabsci.org/content/37/1/79 - PubMed
  14. O'Donnell DR, Carrington D. Peripheral blood lymphopenia and neutrophilia in children with severe respiratory syncytial virus disease. Pediatr Pulmonol. 2002;34(2):128-130. https://doi.org/10.1002/ppul.10140 - PubMed
  15. van Meurs M, Kümpers P, Ligtenberg JJM. Meertens JHJM, Molema G, Zijlstra JG. Bench-to-bedside review: angiopoietin signalling in critical illness-a future target? Crit Care. 2009;13(2):207. https://doi.org/10.1186/cc7153 - PubMed
  16. Agrawal A, Matthay MA, Kangelaris KN, et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med. 2013;187(7):736-742. https://doi.org/10.1164/rccm.201208-1460OC - PubMed
  17. Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA. Plasma angiopoietin-2 in clinical acute lung injury. Crit Care Med. 2012;40(6):1731-1737. https://doi.org/10.1097/CCM.0b013e3182451c87 - PubMed
  18. WHO | WHO Anthro Survey Analyser and Other Tools. World Health Organization; 2019. Accessed October 21, 2020. http://www.who.int/childgrowth/software/en/ - PubMed
  19. Juliana AE, Tang M-J, Kemps L, et al. Viral causes of severe acute respiratory infection in hospitalized children and association with outcomes: a two-year prospective surveillance study in Suriname. PLOS One. 2021;16(2):e0247000. https://doi.org/10.1371/journal.pone.0247000 - PubMed
  20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1-2):279-284. https://doi.org/10.1016/S0166-4328(01)00297-2 - PubMed
  21. Zinter MS, Spicer A, Orwoll BO, et al. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am J Physiol Cell Mol Physiol. 2016;310(3):L224-L231. https://doi.org/10.1152/ajplung.00336.2015 - PubMed
  22. Giuliano JS Jr, Lahni PM, Harmon K, et al. Admission angiopoietin levels in children with septic shock. Shock. 2007;28(6):650-654. https://doi.org/10.1097/shk.0b013e318123867b - PubMed
  23. Ricciuto DR, dos Santos CC, Hawkes M, et al. Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med. 2011;39(4):702-710. https://doi.org/10.1097/CCM.0b013e318206d285 - PubMed
  24. Gutbier B, Neuhauß AK, Reppe K, et al. Prognostic and pathogenic role of angiopoietin-1 and -2 in pneumonia. Am J Respir Crit Care Med. 2018;198(2):220-231. https://doi.org/10.1164/rccm.201708-1733OC - PubMed
  25. Giuliano JS, Tran K, Li F-Y, Shabanova V, Tala JA, Bhandari V. The temporal kinetics of circulating angiopoietin levels in children with sepsis. Pediatr Crit Care Med. 2014;15(1):e1-e8. https://doi.org/10.1097/PCC.0b013e3182a553bb - PubMed
  26. Kümpers P, van Meurs M, David S, et al. Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis. Crit Care. 2009;13(3):R64. https://doi.org/10.1186/cc7866 - PubMed
  27. Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med. 2002;33(3):303-310. https://doi.org/10.1016/S0891-5849(02)00823-7 - PubMed
  28. Zonneveld R, Martinelli R, Shapiro NI, Kuijpers TW, Plötz FB, Carman CV. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit Care. 2014;18(1):204. https://doi.org/10.1186/cc13733 - PubMed
  29. Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, Around, and through: neutrophil-endothelial interactions in innate immunity. Physiology (Bethesda). 2011;26(5):334-347. https://doi.org/10.1152/physiol.00011.2011 - PubMed
  30. Hyun Y-M, Hong C-W. Deep insight into neutrophil trafficking in various organs. J Leukoc Biol. 2017;102(3):617-629. https://doi.org/10.1189/jlb.1RU1216-521R - PubMed
  31. Aulakh GK. Neutrophils in the lung: “the first responders”. Cell Tissue Res. 2018;371(3):577-588. https://doi.org/10.1007/s00441-017-2748-z - PubMed
  32. Doerschuk CM. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation. 2001;8(2):71-88. https://doi.org/10.1111/j.1549-8719.2001.tb00159.x - PubMed
  33. Zonneveld R, Jongman RM, Juliana A, Molema G, Van Meurs M, Plötz FB. Serum concentrations of endothelial cell adhesion molecules and their shedding enzymes and early onset sepsis in newborns in Suriname. BMJ Paediatr Open. 2018;2(1):000312. https://doi.org/10.1136/bmjpo-2018-000312 - PubMed
  34. Achten NB, van Meurs M, Jongman RM, et al. Markers of endothelial cell activation in suspected late onset neonatal sepsis in Surinamese newborns: a pilot study. Transl Pediatr. 2019;8(5):412-418. https://doi.org/10.21037/tp.2019.11.03 - PubMed
  35. Lukens MV, van de Pol AC, Coenjaerts FE, et al. A systemic neutrophil response precedes robust CD8+ T-cell activation during natural respiratory syncytial virus infection in infants. J Virol. 2010;84(5):2374-2383. https://doi.org/10.1128/JVI.01807-09 - PubMed
  36. Geerdink RJ, Pillay J, Meyaard L, Bont L. Neutrophils in respiratory syncytial virus infection: a target for asthma prevention. J Allergy Clin Immunol. 2015;136(4):838-847. https://doi.org/10.1016/j.jaci.2015.06.034 - PubMed
  37. Bont L, Kimpen JL. Immunological mechanisms of severe respiratory syncytial virus bronchiolitis. Intensive Care Med. 2002;28(5):616-621. https://doi.org/10.1007/s00134-002-1256-z - PubMed
  38. Lomas-Neira J, Venet F, Chung CS, Thakkar R, Heffernan D, Ayala A. Neutrophil-endothelial interactions mediate angiopoietin-2-associated pulmonary endothelial cell dysfunction in indirect acute lung injury in mice. Am J Respir Cell Mol Biol. 2014;50(1):193-200. https://doi.org/10.1165/rcmb.2013-0148OC - PubMed
  39. Silver AH, Nazif JM. Bronchiolitis. Pediatr Rev. 2019;40(11):568-576. https://doi.org/10.1542/PIR.2018-0260 - PubMed

Publication Types