Display options
Share it on

Science. 2021 Jul 23;373(6553):443-448. doi: 10.1126/science.abi7730.

Seismic detection of the martian core.

Science (New York, N.Y.)

Simon C Stähler, Amir Khan, W Bruce Banerdt, Philippe Lognonné, Domenico Giardini, Savas Ceylan, Mélanie Drilleau, A Cecilia Duran, Raphaël F Garcia, Quancheng Huang, Doyeon Kim, Vedran Lekic, Henri Samuel, Martin Schimmel, Nicholas Schmerr, David Sollberger, Éléonore Stutzmann, Zongbo Xu, Daniele Antonangeli, Constantinos Charalambous, Paul M Davis, Jessica C E Irving, Taichi Kawamura, Martin Knapmeyer, Ross Maguire, Angela G Marusiak, Mark P Panning, Clément Perrin, Ana-Catalina Plesa, Attilio Rivoldini, Cédric Schmelzbach, Géraldine Zenhäusern, Éric Beucler, John Clinton, Nikolaj Dahmen, Martin van Driel, Tamara Gudkova, Anna Horleston, W Thomas Pike, Matthieu Plasman, Suzanne E Smrekar

Affiliations

  1. Institute of Geophysics, ETH Zürich, Zürich, Switzerland. [email protected].
  2. Institute of Geophysics, ETH Zürich, Zürich, Switzerland.
  3. Physik-Institut, University of Zürich, Zürich, Switzerland.
  4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  5. Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France.
  6. Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Toulouse, France.
  7. Department of Geology, University of Maryland, College Park, MD, USA.
  8. Geosciences Barcelona - CSIC, Barcelona, Spain.
  9. Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.
  10. Department of Electrical and Electronic Engineering, Imperial College, London, UK.
  11. Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA.
  12. School of Earth Sciences, University of Bristol, Bristol, UK.
  13. DLR Institute of Planetary Research, Berlin, Germany.
  14. Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, Université de Nantes, Université d'Angers, France.
  15. Royal Observatory of Belgium, Brussels, Belgium.
  16. Swiss Seismological Service (SED), ETH Zürich, Zürich, Switzerland.
  17. Schmidt Institute of Physics of the Earth RAS, Moscow, Russia.

PMID: 34437118 DOI: 10.1126/science.abi7730

Abstract

Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Publication Types