Display options
Share it on

J Comp Physiol B. 2021 Nov;191(6):973-978. doi: 10.1007/s00360-021-01401-w. Epub 2021 Aug 31.

Editorial: Untangling the oxygen transport cascade: a tribute to Peter Frappell (Frapps).

Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology

Elias T Polymeropoulos, William K Milsom

Affiliations

  1. Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia. [email protected].
  2. Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

PMID: 34463812 DOI: 10.1007/s00360-021-01401-w

Abstract

This collection of research articles was put together in honour of respiratory physiologist Professor Peter Frappell's (Frapps's) academic achievements. It encompasses various topics relating to the oxygen transport cascade, which was central to Frapps' career as a comparative physiologist. This issue highlights the diversity and outreach of his influence on the field and his pioneering spirit; promoting novel perspectives, methodologies and research techniques. This issue also demonstrates how Frapps' knowledge and scientific findings answered some of the fundamental questions within the field of respiratory physiology while creating and fostering a rather unique work atmosphere in the laboratories he led. We thank Frapps for the contributions he has made and the friendships he has nurtured over his career. Cheers, Frapps - we love you mate!

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Body temperature; Heart rate; Hypoxia; Lung ventilation; Metabolism; Oxygen consumption

References

  1. Airaksinen S, Nikinmaa M (1995) Effect of haemoglobin concentration on the oxygen affinity of intact lamprey erythrocytes. J Exp Biol 198:2393–2396 - PubMed
  2. Alter K, Morash AJ, Andrewartha SJ et al (2021) Aerobic and anaerobic movement energetics of hybrid and pure parental abalone. J Comp Physiol B Biochem Syst Environ Physiol. https://doi.org/10.1007/s00360-021-01388-4 - PubMed
  3. Andrewartha SJ, Cummings KJ, Frappell PB (2014) Acid-base balance in the developing marsupial: from ectotherm to endotherm. J Appl Physiol 116:1210–1219. https://doi.org/10.1152/japplphysiol.00996.2013 - PubMed
  4. Andrewartha S, Elliott N, Mcculloch J, Frappell P (2015) Aquaculture sentinels: smart-farming with biosensor equipped stock. J Aquac Res Dev 7:393. https://doi.org/10.4172/2155-9546.1000393 - PubMed
  5. Arnold PA, Delean S, Cassey P, White CR (2021) Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J Comp Physiol B Biochem Syst Environ Physiol. https://doi.org/10.1007/s00360-021-01358-w - PubMed
  6. Barrett SRW, Seymour RS (2021) Extreme hypoxia and high lactate concentrations in early chicken embryos show that cutaneous oxygen uptake is limited by diffusion and metabolism is partially anaerobic. J Comp Physiol B Biochem Syst Environ Physiol. https://doi.org/10.1007/s00360-021-01372-y - PubMed
  7. Bianchini K, Wright PA (2013) Hypoxia delays hematopoiesis: retention of embryonic hemoglobin and erythrocytes in larval rainbow trout, Oncorhynchus mykiss, during chronic hypoxia exposure. J Exp Biol 216:4415–4425. https://doi.org/10.1242/jeb.083337 - PubMed
  8. Bishop C, Spivey R, Hawkes L et al (2015) The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347:250–254. https://doi.org/10.1126/science.1258732 - PubMed
  9. Black IRG, Aedy LK, Tattersall GJ (2021) Hot and covered: how dragons face the heat and thermoregulate. J Comp Physiol B Biochem Syst Environ Physiol 191:545–552. https://doi.org/10.1007/s00360-020-01332-y - PubMed
  10. Boggs D, Frappell P, Kilgore D (1998) Ventilatory, cardiovascular and metabolic responses to hypoxia and hypercapnia in the armadillo. Respir Physiol 113:101–109. https://doi.org/10.1016/S0034-5687(98)00046-2 - PubMed
  11. Boggs DF, Kilgore DL, Lacefield S (2021) Correlation between convection requirement and carotid body responses to hypoxia and hemoglobin affinity: comparison between two rat strains. J Comp Physiol B. https://doi.org/10.1007/s00360-021-01377-7 - PubMed
  12. Butler P, Frappell P, Wang T, Wikelski M (2002) The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures. J Exp Biol 205:1917–1924 - PubMed
  13. Chua B, Hawkes LA, Milsom WK (2021) The High-altitude bird chronicles: lessons from field work with Frapps. J Comp Physiol B Biochem Syst Env Physiol. https://doi.org/10.1007/s00360-021-01403-8 - PubMed
  14. Clark TD, Wang T, Butler PJ, Frappell PB (2005) Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard, Varanus rosenbergi. Am J Physiol Regul Integr Comp Physiol 288:R992–R997. https://doi.org/10.1152/ajpregu.00593.2004 - PubMed
  15. Clark T, Taylor B, Seymour R et al (2008) Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna. Proc Biol Sci 275:2841–2850. https://doi.org/10.1098/rspb.2008.0743 - PubMed
  16. Clark TD, Sandblom E, Hinch SG et al (2010) Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka). J Comp Physiol B Biochem Syst Environ Physiol 180:673–684. https://doi.org/10.1007/s00360-009-0442-5 - PubMed
  17. Clark TD, Cummings KJ, Schultz TJ (2021) An exposé of frappellian motion. J Comp Physiol B Biochem Syst Env Physiol. https://doi.org/10.1007/s00360-021-01404-7 - PubMed
  18. Domnik NJ, Polymeropoulos ET, Elliott NG et al (2016) Automated non-invasive video-microscopy of oyster spat heart rate during acute temperature change: impact of acclimation temperature. Front Physiol. https://doi.org/10.3389/fphys.2016.00236 - PubMed
  19. Domnik N, Graham A, Cgs B (2021) Moving average and standard deviation thresholding (MAST): a novel algorithm for accurate R-wave detection in the murine electrocardiogram. J Comp Physiol B Biochem Syst Environ Physiol. https://doi.org/10.1007/s00360-021-01389-3 - PubMed
  20. Dzialowski E, Tattersall G, Nicol S, Frappell P (2014) Fluctuations in oxygen influence facultative endothermy in Bumblebees. J Exp Biol 217:3834–3842. https://doi.org/10.1242/jeb.107052 - PubMed
  21. Fick A (1870) Ueber die Messung des Blutquantums in den Herzventrikeln. Zeitung Der Phys Und Medizinischen Gesellschaft Wuerzbg 2:290–291 - PubMed
  22. Frappell PB (2021) Use beer to calibrate your CO - PubMed
  23. Frappell P, Macfarlane P (2001) Effects of hypoxia and hypothermia on the end-inspiratory pause and Hering-Breüer reflex in the neonatal tammar wallaby. Respir Res. https://doi.org/10.1186/rr128 - PubMed
  24. Frappell PB, Butler PJ (2004) Minimal metabolic rate, what it is, its usefulness, and its relationship to the evolution of endothermy: a brief synopsis. Physiol Biochem Zool 77:865–868. https://doi.org/10.1086/425191 - PubMed
  25. Frappell P, Blevin HA, Baudinette RV (1989) Understanding respirometry chambers: what goes in must come out. J Theor Biol 138:479–494. https://doi.org/10.1016/S0022-5193(89)80046-3 - PubMed
  26. Frappell P, Saiki C, Mortola J (1991) Metabolism during normoxia, hypoxia and recovery in the newborn kitten. Respir Physiol 86:115–124. https://doi.org/10.1016/0034-5687(91)90043-I - PubMed
  27. Frappell P, Lanthier C, Baudinette R, Mortola J (1992) Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. Am J Physiol 262:R1040–R1046. https://doi.org/10.1152/ajpregu.1992.262.6.R1040 - PubMed
  28. Frappell P, Franklin C, Grigg G (1995a) Ventilatory and metabolic responses to hypoxia in the echidna, Tachyglossus aculeatus. Am J Physiol 267:R1510–R1515. https://doi.org/10.1152/ajpregu.1994.267.6.R1510 - PubMed
  29. Frappell P, Westwood K, Maskrey M (1995b) Ventilatory and metabolic responses to hypoxia during moderate hypothermia in anesthetized rats. J Appl Physiol 79:256–260. https://doi.org/10.1152/jappl.1995.79.1.256 - PubMed
  30. Frappell P, Schultz T, Christian K (2002) Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. J Exp Biol 205:2725–2736. https://doi.org/10.1242/jeb.205.17.2725 - PubMed
  31. Green J, Frappell P, Clark T, Butler PJ (2008) Predicting rate of oxygen consumption from heart rate while little penguins work, rest and play. Comp Biochem Physiol A Mol Integr Physiol 150:222–230. https://doi.org/10.1016/j.cbpa.2006.06.017 - PubMed
  32. Hawkes L, Sivananinthaperumal B, Batbayar N et al (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci USA 108:9516–9519. https://doi.org/10.1073/pnas.1017295108 - PubMed
  33. Hawkes L, Butler P, Frappell P et al (2014) Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia. PLoS ONE 9:e94015. https://doi.org/10.1371/journal.pone.0094015 - PubMed
  34. Jastroch M, Buckingham JA, Helwig M et al (2007) Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B 177:743–752. https://doi.org/10.1007/s00360-007-0171-6 - PubMed
  35. Jastroch M, Polymeropoulos ET, Gaudry MJ (2021) Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials. J Comp Physiol B. https://doi.org/10.1007/s00360-021-01362-0 - PubMed
  36. Lague S, Chua B, Alza L et al (2017) Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds. J Exp Biol 220:4186–4194. https://doi.org/10.1242/jeb.168799 - PubMed
  37. Lague S, Ivy C, York J et al (2020) Cardiovascular responses to progressive hypoxia in ducks native to high altitude in the Andes. J Exp Biol. https://doi.org/10.1242/jeb.211250 - PubMed
  38. Macfarlane P, Frappell P (2004) Hypothermia and hypoxia inhibit the Hering-Breuer reflex in the marsupial newborn. Am J Physiol Regul Integr Comp Physiol 286:R857–R864. https://doi.org/10.1152/ajpregu.00225.2003 - PubMed
  39. Macfarlane P, Frappell P, Mortola J (2002) Mechanics of the respiratory system in the newborn tammar wallaby. J Exp Biol 205:533–538 - PubMed
  40. Macfarlane PM, Frappell PB, Haase T (2021) Respiratory characteristics of the tammar wallaby pouch young and functional limitations in a newborn with skin gas exchange. J Comp Physiol B. https://doi.org/10.1007/s00360-021-01364-y - PubMed
  41. Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc Biol Sci 276:735–744 - PubMed
  42. Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944. https://doi.org/10.1139/cjpp-76-10-11-937 - PubMed
  43. Mortola J, Frappell P, Frappell D et al (1992) Ventilation and gaseous metabolism in infants born at high altitude, and their responses to hyperoxia. Am Rev Respir Dis 146:1206–1209. https://doi.org/10.1164/ajrccm/146.5_Pt_1.1206 - PubMed
  44. Mortola J, Frappell P, Woolley P (1999) Breathing through skin in a newborn mammal. Nature 397:660. https://doi.org/10.1038/17713 - PubMed
  45. Munns S, Frappell P, Evans B (1998) The effects of environmental temperature, hypoxia, and hypercapnia on the breathing pattern of saltwater crocodiles (Crocodylus porosus). Physiol Zool 71:267–273. https://doi.org/10.1086/515913 - PubMed
  46. Polymeropoulos ET, Heldmaier G, Frappell PB et al (2012) Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2011.0881 - PubMed
  47. Polymeropoulos ET, Elliott NG, Frappell PB (2017) Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins. Comp Biochem Physiol Part A Mol Integr Physiol 213:28–35. https://doi.org/10.1016/j.cbpa.2017.08.011 - PubMed
  48. Polymeropoulos ET, Elliott NG, Frappell PB (2019) Acute but not chronic hyperoxia increases metabolic rate without altering the cardiorespiratory response in Atlantic salmon alevins. Aquaculture 502:189–195. https://doi.org/10.1016/j.aquaculture.2018.12.041 - PubMed
  49. Portugal SJ, Green JA, Halsey LG et al (2016) Associations between resting, activity, and daily metabolic rate in free-living endotherms: no universal rule in birds and mammals. Physiol Biochem Zool 89:251–261. https://doi.org/10.1086/686322 - PubMed
  50. Pu P, Zhao Y, Niu Z et al (2021) Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asiatic toad (Bufo gargarizans). J Comp Physiol B. https://doi.org/10.1007/s00360-021-01368-8 - PubMed
  51. Scott G, Hawkes L, Frappell P et al (2015) How Bar-Headed Geese Fly Over the Himalayas. Physiology (bethesda) 30:107–115. https://doi.org/10.1152/physiol.00050.2014 - PubMed
  52. Simpson S, Flecknoe S, Clugston R et al (2011) Structural and functional development of the respiratory system in a newborn marsupial with cutaneous gas exchange. Physiol Biochem Zool 84:634–649. https://doi.org/10.1086/662557 - PubMed
  53. Simpson S, Fong A, Cummings K, Frappell P (2012) The ventilatory response to hypoxia and hypercapnia is absent in the neonatal fat-tailed dunnart. J Exp Biol. https://doi.org/10.1242/jeb.072413 - PubMed
  54. Sloman K, Haag J, Frappell P (2009) From Daphnia to geckos: the non-genetic component of individual variation. Comp Biochem Physiol A Mol Integr Physiol Comp Biochem Physiol Pt A. https://doi.org/10.1016/j.cbpa.2009.04.100 - PubMed
  55. Vincent SG, Vincent SG, Fisher JT, Vincent SG (2021) In vivo cardiopulmonary impact of skeletal M - PubMed
  56. West CM, Ivy CM, Husnudinov R, Scott GR (2021) Evolution and developmental plasticity of lung structure in high-altitude deer mice. J Comp Physiol B Biochem Syst Environ Physiol 191:385–396. https://doi.org/10.1007/s00360-021-01343-3 - PubMed
  57. White C, Seymour RS (2021) The roles of diffusion and convection in ventilation of animal burrows. J Comp Physiol B Biochem Syst Env Physiol. https://doi.org/10.1007/s00360-021-01395-5 - PubMed
  58. White C, Alton L, Frappell P (2011) Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc Biol Sci 279:1740–1747. https://doi.org/10.1098/rspb.2011.2060 - PubMed
  59. Wiggins P, Frappell P (2000) The Influence of haemoglobin on behavioural thermoregulation and oxygen consumption in Daphnia carinata. Physiol Biochem Zool 73:153–160. https://doi.org/10.1086/316739 - PubMed
  60. Wiggins P, Frappell P (2002) Behavioural thermoregulation in Daphnia carinata from different depths of a natural water body: influence of environmental oxygen levels and temperature. Comp Biochem Physiol A Mol Integr Physiol 133:771–780. https://doi.org/10.1016/S1095-6433(02)00238-6 - PubMed
  61. Wood A, Clark T, Elliott N et al (2019) Physiological effects of dissolved oxygen are stage-specific in incubating Atlantic salmon (Salmo salar). J Comp Physiol B. https://doi.org/10.1007/s00360-018-1199-5 - PubMed

Publication Types