Display options
Share it on

J Anim Physiol Anim Nutr (Berl). 2021 Sep 08; doi: 10.1111/jpn.13629. Epub 2021 Sep 08.

Differences in proteomic profiles between yak and three cattle strains provide insights into molecular mechanisms underlying high-altitude adaptation.

Journal of animal physiology and animal nutrition

Jin-Wei Xin, Zhi-Xin Chai, Cheng-Fu Zhang, Qiang Zhang, Yong Zhu, Han-Wen Cao, Cidan YangJi, Xiao-Ying Chen, Hui Jiang, Jin-Cheng Zhong, Qiu-Mei Ji

Affiliations

  1. State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.
  2. Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
  3. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China.

PMID: 34494310 DOI: 10.1111/jpn.13629

Abstract

Yaks display unique properties of the lung and heart, enabling their adaptation to high-altitude environments, but the underlying molecular mechanisms are still largely unknown. In the present study, the proteome differences in lung and heart tissues were compared between yak (Bos grunniens) and three cattle strains (Bos taurus, Holstein, Sanjiang and Tibetan cattle) using the sequential window acquisition of all theoretical mass spectra/data-independent acquisition (SWATH/DIA) proteomic method. In total, 51,755 peptides and 7215 proteins were identified. In the lung tissue, there were 162, 310 and 118 differential abundance proteins (DAPs) in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. In the heart tissue, there were 71, 57 and 78 DAPs in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DAPs were enriched for the retinol metabolism and toll-like receptor categories in lung tissue. The changes in these two pathways may regulate hypoxia-induced factor and immune function in yaks. Moreover, DAPs in heart tissues were enriched for cardiac muscle contraction, Huntington's disease, chemical carcinogenesis and drug metabolism-cytochrome P450. Further exploration indicated that yaks may alter cardiac function through regulation of type 2 ryanodine receptor (RyR2) and Ca

© 2021 Wiley-VCH GmbH.

Keywords: cardiac muscle contraction; high-altitude adaptation; retinol metabolism; toll-like receptor; yak

References

  1. Aggarwal, K., Choe, L., & Lee, K. (2006). Shotgun proteomics using the iTRAQ isobaric tags. Briefings in Functional Genomics & Proteomics, 5, 112-120. https://doi.org/10.1093/bfgp/ell018 - PubMed
  2. Anand, I. S., Harris, E., Ferrari, R., Pearce, P., & Harris, P. (1986). Pulmonary haemodynamics of the yak, cattle, and cross breeds at high altitude. Thorax, 41(9), 696-700. https://doi.org/10.1136/thx.41.9.696 - PubMed
  3. Askew, E. (1995). Environmental and physical stress and nutrient requirements. The American Journal of Clinical Nutrition, 61, 631S-637S. https://doi.org/10.1093/ajcn/61.3.631S - PubMed
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(s 1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 - PubMed
  5. Bruderer, R., Bernhardt, O. M., Gandhi, T., Miladinović, S. M., Cheng, L. Y., Messner, S., Ehrenberger, T., Zanotelli, V., Butscheid, Y., Escher, C., Vitek, O., Rinner, O., & Reiter, L. (2015). Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Molecular & Cellular Proteomics, 14(5), 1400-1410. https://doi.org/10.1074/mcp.M114.044305 - PubMed
  6. Chen, Q. S., Xia, F., & Jiang, S. C. (2006). Structural study on plateau adaptability of yak lung. Scientia Agricultura Sinica, 39(10), 2107-2113. - PubMed
  7. Choi, M., Chang, C. Y., Clough, T., Broudy, D., Killeen, T., MacLean, B., & Vitek, O. (2014). MSstats: An R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics, 30(17), 2524-2526. https://doi.org/10.1093/bioinformatics/btu305 - PubMed
  8. Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367-1372. https://doi.org/10.1038/nbt.1511 - PubMed
  9. Dhindwal, S., Lobo, J., Cabra, V., Santiago, D. J., Nayak, A. R., Dryden, K., & Samso, M. (2017). A cryo-EM-based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Science Signaling, 10(480), eaai8842. https://doi.org/10.1126/scisignal.aai8842 - PubMed
  10. Ding, X., Liang, C. N., Guo, X., Wu, X., Wang, H. B., Johnson, K. A., & Yan, P. (2014). Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the qinghai-tibetan plateau altitudinal gradient. Livestock Science, 162, 233-239. https://doi.org/10.1016/j.livsci.2014.01.012 - PubMed
  11. Duan, D., Yu, S., & Cui, Y. (2012). Morphological study of the sinus node and its artery in yak. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295, C1. https://doi.org/10.1002/ar.22472 - PubMed
  12. Edenberg, H. J. (2007). The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Research & Health, 30(1), 5-13. - PubMed
  13. Floyd, R. A., & Hensley, K. (2002). Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiology of Aging, 23(5), 795-807. https://doi.org/10.1016/s0197-4580(02)00019-2 - PubMed
  14. Gibson, G. (1989). Causes of cell damage in hypoxia/ischemia, aging and Alzheimer's disease. Neurobiology of Aging, 10(5), 608-609. https://doi.org/10.1016/0197-4580(89)90147-4 - PubMed
  15. Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., & Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11(6), O111.016717. https://doi.org/10.1074/mcp.O111.016717 - PubMed
  16. Guan, J., Long, K., Ma, J., Zhang, J., He, D., Jin, L., Tang, Q., Jiang, A., Wang, X., Hu, Y., Tian, S., Jiang, Z., Li, M., & Luo, X. (2017). Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation. PeerJ, 5, e3959. https://doi.org/10.7717/peerj.3959 - PubMed
  17. Heath, D., Williams, D., & Dickinson, J. (1984). The pulmonary arteries of the yak. Cardiovascular Research, 18(3), 133-139. https://doi.org/10.1093/cvr/18.3.133 - PubMed
  18. Iaparov, B., Moskvin, A., Ryvkin, A., & Solovyova, O. (2016). Electron-conformational transformations govern the temperature dependence of the RyR2 Gating. Biophysical Journal, 110, 262a-263a. https://doi.org/10.1016/j.bpj.2015.11.1436 - PubMed
  19. Ishida, I., Kubo, H., Suzuki, S., Suzuki, T., Akashi, S., Inoue, K., Maeda, S., Kikuchi, H., Sasaki, H., & Kondo, T. (2002). Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. Journal of Immunology, 169(4), 2069-2075. https://doi.org/10.4049/jimmunol.169.4.2069 - PubMed
  20. Kim, S. Y., Choi, Y. J., Joung, S. M., Lee, B. H., Jung, Y. S., & Lee, J. Y. (2010). Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology, 129(4), 516-524. https://doi.org/10.1111/j.1365-2567.2009.03203.x - PubMed
  21. Klokker, M., Kharazmi, A., Galbo, H., Bygbjerg, I., & Pedersen, B. K. (1993). Influence of in vivo hypobaric hypoxia on function of lymphocytes, neutrocytes, natural killer cells, and cytokines. Journal of Applied Physiology, 74(3), 1100-1106. https://doi.org/10.1152/jappl.1993.74.3.1100 - PubMed
  22. Liang, C., Guo, S., & Yang, L. (2014). Effects of alltrans retinoic acid on VEGF and HIF-1α expression in glioma cells under normoxia and hypoxia and its antiangiogenic effect in an intracerebral glioma model. Molecular Medicine Reports, 10(5), 2713-2719. https://doi.org/10.3892/mmr.2014.2543 - PubMed
  23. Lu, T., Cui, G., Lai, M., & Xia, L. (1991). Histological structure and characteristics of heart and lung in yak. China Yak, 8(2), 33-35. [In Chinese]. - PubMed
  24. Michal, J. J, Russell, J. R, Hansen, S. L, Taylor, J. F, Kerley, M. S, & Johnson, K. A. (2016). 1483 NADH dehydrogenase (ubiquinone) Fe-S protein-1 (NDUFS1), a core subunit of mitochondrial complex I, is not differentially expressed in peripheral blood mononuclear cells of beef steers with divergent residual feed intakes. Journal of Animal Science, 94, 720. https://doi.org/10.2527/jam2016-1483 - PubMed
  25. Mishra, K., & Ganju, L. (2010). Influence of high altitude exposure on the immune system: A review. Immunological Investigations, 39, 219-234. https://doi.org/10.3109/08820131003681144 - PubMed
  26. Piccinini, A. M., & Midwood, K. S. (2010). DAMPening inflammation by modulating TLR signalling. Mediators of Inflammation, 2010, 1-21. https://doi.org/10.1155/2010/672395 - PubMed
  27. Piekuse, L., Lace, B., Kreile, M., Sadovska, L., Kempa, I., Daneberga, Z., Mičule, I., Sondore, V., Keiss, J., & Krumina, A. (2014). Impact of the genes UGT1A1, GSTT1, GSTM1, GSTA1, GSTP1 and NAT2 on acute alcohol-toxic hepatitis. Central European Journal of Biology, 9(2), 125-130. https://doi.org/10.2478/s11535-013-0249-y - PubMed
  28. Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D. M., Auvil, L., Capitanu, B., Ma, J., Lewin, H. A., Qian, X., Lang, Y., Zhou, R., Wang, L., Wang, K., … Liu, J. (2012). The yak genome and adaptation to life at high altitude. Nature Genetics, 44, 946-949. https://doi.org/10.1038/ng.2343 - PubMed
  29. Recavarren, S., & Arias-Stella, J. (1964). Right ventricular hypertrophy in people born and living at high altitudes. Heart, 26, 806-812. https://doi.org/10.1136/hrt.26.6.806 - PubMed
  30. Richalet, J. P., Larmignat, P., Rathat, C., Kéromès, A., Baud, P., & Lhoste, F. (1988). Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. Journal of Applied Physiology, 65, 1957-1961. https://doi.org/10.1016/0883-9441(89)90015-4 - PubMed
  31. Shah, A., Matsumura, N., Quon, A., Morton, J., Dyck, J. R. B., & Davidge, S. (2017). Cardiovascular susceptibility to in vivo ischemic myocardial injury in male and female rat offprint exposed to prenatal hypoxia. Clinical Science, 131, CS20171122. https://doi.org/10.1042/CS20171122 - PubMed
  32. Tucker, A., McMurtry, I., Reeves, J., Alexander, A., Will, D., & Grover, R. (1975). Lung vascular smooth muscle as a determinant of pulmonary hypertension at altitude. The American Journal of Physiology, 228, 762-767. https://doi.org/10.1152/ajplegacy.1975.228.3.762 - PubMed
  33. Vowinckel, J., Capuano, F., Campbell, K., Deery, M., Lilley, K., & Ralser, M. (2013). The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000Research, 2, 272. https://doi.org/10.12688/f1000research.2-272.v1 - PubMed
  34. Wan, X., Li, X., Bo, H., Zhao, Y., Liu, L., Chen, W., Yin, Z., & Cao, C. (2013). All-trans retinoic acid protects renal tubular epithelial cells against hypoxia induced injury in vitro. Transplantation Proceedings, 45(2), 497-502. https://doi.org/10.1016/j.transproceed.2012.02.030 - PubMed
  35. Wang, K., Yang, Y., Wang, L., Ma, T., Shang, H., Ding, L., Han, J., & Qiu, Q. (2016). Different gene expressions between cattle and yak provide insights into high-altitude adaptation. Animal Genetics, 47(1), 28-35. https://doi.org/10.1111/age.12377 - PubMed
  36. Wen, W., Zhao, Z., Li, R., Guan, J., Zhou, Z., Luo, X., Suman, S. P., & Sun, Q. (2019). Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks. Molecular Biology Reports, 46, 2857-2866. https://doi.org/10.1007/s11033-019-04732-8 - PubMed
  37. Xin, J. W., Chai, Z. X., Zhang, C. F., Zhang, Q., Zhu, Y., Cao, H. W., Ji, Q. M., & Zhong, J. C. (2019). Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Scientific Reports, 9(1), 7558. https://doi.org/10.1038/s41598-019-43773-8 - PubMed
  38. Xu, Y., Gao, A. M., Ji, L. J., Li, X., Zhong, L. L., Li, H. L., & Zheng, D. H. (2016). All-trans retinoic acid attenuates hypoxia-induced injury in NRK52E cells via inhibiting NF-κB/VEGF and TGF-β2/VEGF pathway. Cellular Physiology and Biochemistry, 38, 229-236. https://doi.org/10.1159/000438624 - PubMed
  39. Yang, B., Yu, S., Cui, Y., He, J., Jin, X., & Wang, R. (2010). Morphological analysis of the lung of neonatal yak. Anatomia Histologia Embryologia, 39(2), 138-151. https://doi.org/10.1111/j.1439-0264.2009.00988.x - PubMed
  40. Zhou, J., Yu, S., He, J., & Cui, Y. (2013). Segmentation features and structural organization of the intrapulmonary artery of the yak. Anatomical Record, 296, 1775-1788. https://doi.org/10.1002/ar.22790 - PubMed

Publication Types

Grant support