Display options
Share it on

J Neurosci Res. 2021 Nov;99(11):2844-2859. doi: 10.1002/jnr.24948. Epub 2021 Sep 08.

How do zebrafish (Danio rerio) respond to MK-801 and amphetamine? Relevance for assessing schizophrenia-related endophenotypes in alternative model organisms.

Journal of neuroscience research

Radharani Benvenutti, Matheus Gallas-Lopes, Adrieli Sachett, Matheus Marcon, Nathan Ryzewski Strogulski, Carlos Guilherme Reis, Rafael Chitolina, Angelo Piato, Ana Paula Herrmann

Affiliations

  1. Departmento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
  2. Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
  3. Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
  4. Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

PMID: 34496062 DOI: 10.1002/jnr.24948

Abstract

Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 μM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.

© 2021 Wiley Periodicals LLC.

Keywords: dextroamphetamine; dizocilpine maleate; locomotion; schizophrenia; social behavior; zebrafish

References

  1. Akoglu, H. (2018). User's guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93. https://doi.org/10.1016/j.tjem.2018.08.001 - PubMed
  2. Balu, D. T., Li, Y., Puhl, M. D., Benneyworth, M. A., Basu, A. C., Takagi, S., Bolshakov, V. Y., & Coyle, J. T. (2013). Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proceedings of the National Academy of Sciences of the United States of America, 110(26), E2400-E2409. https://doi.org/10.1073/pnas.1304308110 - PubMed
  3. Beck, K., Hindley, G., Borgan, F., Ginestet, C., McCutcheon, R., Brugger, S., Driesen, N., Ranganathan, M., D’Souza, D. C., Taylor, M., Krystal, J. H., & Howes, O. D. (2020). Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: A systematic review and meta-analysis. JAMA Network Open, 3(5), e204693. https://doi.org/10.1001/jamanetworkopen.2020.4693 - PubMed
  4. Benvenutti, R., Marcon, M., Gallas-Lopes, M., de Mello, A. J., Herrmann, A. P., & Piato, A. (2021). Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neuroscience & Biobehavioral Reviews, 127, 761-778. https://doi.org/10.1016/j.neubiorev.2021.05.027 - PubMed
  5. Bitanihirwe, B. K. Y., & Woo, T.-U.- W. (2011). Oxidative stress in schizophrenia: An integrated approach. Neuroscience and Biobehavioral Reviews, 35(3), 878-893. https://doi.org/10.1016/j.neubiorev.2010.10.008 - PubMed
  6. Bruni, G., Rennekamp, A. J., Velenich, A., McCarroll, M., Gendelev, L., Fertsch, E., Taylor, J., Lakhani, P., Lensen, D., Evron, T., Lorello, P. J., Huang, X.-P., Kolczewski, S., Carey, G., Caldarone, B. J., Prinssen, E., Roth, B. L., Keiser, M. J., Peterson, R. T., & Kokel, D. (2016). Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nature Chemical Biology, 12(7), 559-566. https://doi.org/10.1038/nchembio.2097 - PubMed
  7. Burrows, E. L., & Hannan, A. J. (2016). Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biological Psychology, 116, 82-89. https://doi.org/10.1016/j.biopsycho.2015.11.015 - PubMed
  8. Bygrave, A. M., Masiulis, S., Nicholson, E., Berkemann, M., Barkus, C., Sprengel, R., Harrison, P. J., Kullmann, D. M., Bannerman, D. M., & Kätzel, D. (2016). Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801. Translational Psychiatry, 6, e778. https://doi.org/10.1038/tp.2016.44 - PubMed
  9. Cabungcal, J.-H., Steullet, P., Kraftsik, R., Cuenod, M., & Do, K. Q. (2013). Early-life insults impair parvalbumin interneurons via oxidative stress: Reversal by N-acetylcysteine. Biological Psychiatry, 73(6), 574-582. https://doi.org/10.1016/j.biopsych.2012.09.020 - PubMed
  10. Carlsson, M., & Carlsson, A. (1989). The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. Journal of Neural Transmission, 75(3), 221-226. https://doi.org/10.1007/bf01258633 - PubMed
  11. Cognato, G. P., Bortolotto, J. W., Blazina, A. R., Christoff, R. R., Lara, D. R., Vianna, M. R., & Bonan, C. D. (2012). Y-Maze memory task in zebrafish (Danio rerio):The role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiology of Learning and Memory, 98(4), 321-328. https://doi.org/10.1016/j.nlm.2012.09.008 - PubMed
  12. Coyle, J. T., Basu, A., Benneyworth, M., Balu, D., & Konopaske, G. (2012). Glutamatergic synaptic dysregulation in schizophrenia: Therapeutic implications. Handbook of Experimental Pharmacology, 213, 267-295. https://doi.org/10.1007/978-3-642-25758-2_10 - PubMed
  13. Dichtl, S., Haschka, D., Nairz, M., Seifert, M., Volani, C., Lutz, O., & Weiss, G. (2018). Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochemical Pharmacology, 148, 193-201. https://doi.org/10.1016/j.bcp.2017.12.001 - PubMed
  14. Dreosti, E., Lopes, G., Kampff, A. R., & Wilson, S. W. (2015). Development of social behavior in young zebrafish. Frontiers in Neural Circuits, 9, 39. https://doi.org/10.3389/fncir.2015.00039 - PubMed
  15. El-Tawil, O. S., Abou-Hadeed, A. H., El-Bab, M. F., & Shalaby, A. A. (2011). D-Amphetamine-induced cytotoxicity and oxidative stress in isolated rat hepatocytes. Pathophysiology, 18(4), 279-285. https://doi.org/10.1016/j.pathophys.2011.04.001 - PubMed
  16. Featherstone, R. E., Kapur, S., & Fletcher, P. J. (2007). The amphetamine-induced sensitized state as a model of schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(8), 1556-1571. https://doi.org/10.1016/j.pnpbp.2007.08.025 - PubMed
  17. Franscescon, F., Müller, T. E., Bertoncello, K. T., & Rosemberg, D. B. (2020). Neuroprotective role of taurine on MK-801-induced memory impairment and hyperlocomotion in zebrafish. Neurochemistry International, 135, 104710. https://doi.org/10.1016/j.neuint.2020.104710 - PubMed
  18. Frey, B. N., Valvassori, S. S., Gomes, K. M., Martins, M. R., Dal-Pizzol, F., Kapczinski, F., & Quevedo, J. (2006). Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Research, 1097(1), 224-229. https://doi.org/10.1016/j.brainres.2006.04.076 - PubMed
  19. Gaspary, K. V., Reolon, G. K., Gusso, D., & Bonan, C. D. (2018). Novel object recognition and object location tasks in zebrafish: Influence of habituation and NMDA receptor antagonism. Neurobiology of Learning and Memory, 155, 249-260. https://doi.org/10.1016/j.nlm.2018.08.005 - PubMed
  20. Gawel, K., Banono, N. S., Michalak, A., & Esguerra, C. V. (2019). A critical review of zebrafish schizophrenia models: Time for validation? Neuroscience & Biobehavioral Reviews, 107, 6-22. https://doi.org/10.1016/j.neubiorev.2019.08.001 - PubMed
  21. Gerlai, R. (2019). Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacology Biochemistry and Behavior, 178, 30-38. https://doi.org/10.1016/j.pbb.2018.02.005 - PubMed
  22. Grace, A. A., & Gomes, F. V. (2019). The circuitry of dopamine system regulation and its disruption in schizophrenia: Insights into treatment and prevention. Schizophrenia Bulletin, 45(1), 148-157. https://doi.org/10.1093/schbul/sbx199 - PubMed
  23. Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812. https://doi.org/10.1093/bioinformatics/btu393 - PubMed
  24. Hardingham, G. E., & Do, K. Q. (2016). Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nature Reviews Neuroscience, 17(2), 125-134. https://doi.org/10.1038/nrn.2015.19 - PubMed
  25. Herrmann, A. P., Benvenutti, R., Pilz, L. K., & Elisabetsky, E. (2014). N-acetylcysteine prevents increased amphetamine sensitivity in social isolation-reared mice. Schizophrenia Research, 155(1-3), 109-111. https://doi.org/10.1016/j.schres.2014.03.012 - PubMed
  26. Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187-193. https://doi.org/10.1038/nature09552 - PubMed
  27. Jones, C., Watson, D., & Fone, K. (2011). Animal models of schizophrenia. British Journal of Pharmacology, 164(4), 1162-1194. https://doi.org/10.1111/j.1476-5381.2011.01386.x - PubMed
  28. Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., Craddock, C., Kyzar, E. J., Roth, A., Landsman, S., Gaikwad, S., Robinson, K., Baatrup, E., Tierney, K., Shamchuk, A., Norton, W., Miller, N., Nicolson, T., Braubach, O. Gilman, C. P., Pittman, J., Rosemberg, D. B., Gerlai, R., Echevarria, D., Lamb, E., Neuhauss, S. C., Weng, W., Bally-Cuif, L., Schneider, H.; Zebrafish Neuroscience Research Consortium. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10(1), 70-86. https://doi.org/10.1089/zeb.2012.0861 - PubMed
  29. Kelley, A. E., Lang, C. G., & Gauthier, A. M. (1988). Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology, 95(4), 556-559. https://doi.org/10.1007/BF00172976 - PubMed
  30. Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Translational Psychiatry, 8(1), 1-12. https://doi.org/10.1038/s41398-017-0071-9 - PubMed
  31. Konradi, C., Yang, C. K., Zimmerman, E. I., Lohmann, K. M., Gresch, P., Pantazopoulos, H., Berretta, S., & Heckers, S. (2011). Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Research, 131(1), 165-173. https://doi.org/10.1016/j.schres.2011.06.007 - PubMed
  32. Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., & Monyer, H. (2010). NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron, 68(3), 557-569. https://doi.org/10.1016/j.neuron.2010.09.017 - PubMed
  33. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., & Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51(3), 199-214. https://doi.org/10.1001/archpsyc.1994.03950030035004 - PubMed
  34. Krystal, J. H., Perry, E. B., Gueorguieva, R., Belger, A., Madonick, S. H., Abi-Dargham, A., Cooper, T. B., MacDougall, L., Abi-Saab, W., & D’Souza, D. C. (2005). Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: Implications for glutamatergic and dopaminergic model psychoses and cognitive function. Archives of General Psychiatry, 62(9), 985-995. https://doi.org/10.1001/archpsyc.62.9.985 - PubMed
  35. Kyzar, E., Stewart, A. M., Landsman, S., Collins, C., Gebhardt, M., Robinson, K., & Kalueff, A. V. (2013). Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Research, 1527, 108-116. https://doi.org/10.1016/j.brainres.2013.06.033 - PubMed
  36. Leary, S., Pharmaceuticals, F., Underwood, W., Anthony, R., Cartner, S., Johnson, C. L., & Patterson-Kane, E. (2020). AVMA guidelines for the euthanasia of animals: 2020 edition (p. 121). AVMA. ISBN 978-1-882691-54-8. - PubMed
  37. Leung, L. C., & Mourrain, P. (2016). Zebrafish uncover novel antipsychotics. Nature Chemical Biology, 12(7), 468-469. https://doi.org/10.1038/nchembio.2114 - PubMed
  38. Levin, E. D., Bencan, Z., & Cerutti, D. T. (2007). Anxiolytic effects of nicotine in zebrafish. Physiology & Behavior, 90(1), 54-58. https://doi.org/10.1016/j.physbeh.2006.08.026 - PubMed
  39. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. https://projecteuclid.org/euclid.bsmsp/1200512992 - PubMed
  40. Marcon, M., Mocelin, R., Sachett, A., Siebel, A. M., Herrmann, A. P., & Piato, A. (2018). Enriched environment prevents oxidative stress in zebrafish submitted to unpredictable chronic stress. PeerJ, 6, e5136. https://doi.org/10.7717/peerj.5136 - PubMed
  41. Matsui, H. (2017). Dopamine system, cerebellum, and nucleus ruber in fish and mammals. Development Growth and Differentiation, 59(4), 219-227. https://doi.org/10.1111/dgd.12357 - PubMed
  42. McCutcheon, R., Beck, K., Jauhar, S., & Howes, O. D. (2018). Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis. Schizophrenia Bulletin, 44(6), 1301-1311. https://doi.org/10.1093/schbul/sbx180 - PubMed
  43. McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry, 19(1), 15-33. https://doi.org/10.1002/wps.20693 - PubMed
  44. Meek, J., & Joosten, H. W. (1993). Tyrosine hydroxylase-immunoreactive cell groups in the brain of the teleost fish Gnathonemus petersii. Journal of Chemical Neuroanatomy, 6(6), 431-46. https://doi.org/10.1016/0891-0618(93)90017-x - PubMed
  45. Menezes, F. P., Kist, L. W., Bogo, M. R., Bonan, C. D., & Da Silva, R. S. (2015). Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish. Zebrafish, 12(2), 137-143. https://doi.org/10.1089/zeb.2014.1018 - PubMed
  46. Michelotti, P., Quadros, V. A., Pereira, M. E., & Rosemberg, D. B. (2018). Ketamine modulates aggressive behavior in adult zebrafish. Neuroscience Letters, 684, 164-168. https://doi.org/10.1016/j.neulet.2018.08.009 - PubMed
  47. Mohn, A. R., Gainetdinov, R. R., Caron, M. G., & Koller, B. H. (1999). Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell, 98(4), 427-436. https://doi.org/10.1016/s0092-8674(00)81972-8 - PubMed
  48. Morrens, M., Hulstijn, W., Lewi, P. J., De Hert, M., & Sabbe, B. G. C. (2006). Stereotypy in schizophrenia. Schizophrenia Research, 84(2-3), 397-404. https://doi.org/10.1016/j.schres.2006.01.024 - PubMed
  49. Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature, 319(6056), 774-776. https://doi.org/10.1038/319774a0 - PubMed
  50. Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69-71. - PubMed
  51. Parker, M. O., Brock, A. J., Walton, R. T., & Brennan, C. H. (2013). The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Frontiers in Neural Circuits, 7, 63. https://doi.org/10.3389/fncir.2013.00063 - PubMed
  52. R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ - PubMed
  53. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., Pearl, E. J., Petersen, O. H., Rawle, F., Reynolds, P., Rooney, K., Sena, E. S., Silberberg, S. D., Steckler, T., Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410 - PubMed
  54. Revelle, W. (2018). psych: Procedures for psychological, psychometric, and personality research. https://cran.r-project.org/package=psych - PubMed
  55. Ridley, R. M., & Baker, H. F. (1982). Stereotypy in monkeys and humans. Psychological Medicine, 12(1), 61-72. https://doi.org/10.1017/s0033291700043294 - PubMed
  56. Rink, E., & Guo, S. (2004). The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience, 127(1), 147-154. https://doi.org/10.1016/j.neuroscience.2004.05.004 - PubMed
  57. Rink, E., & Wullimann, M. F. (2001). The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Research, 889(1-2), 316-330. https://doi.org/10.1016/s0006-8993(00)03174-7 - PubMed
  58. Ryczko, D., Grätsch, S., Schläger, L., Keuyalian, A., Boukhatem, Z., Garcia, C., Auclair, F., Büschges, A., & Dubuc, R. (2017). Nigral glutamatergic neurons control the speed of locomotion. Journal of Neuroscience, 37(40), 9759-9770. https://doi.org/10.1523/JNEUROSCI.1810-17.2017 - PubMed
  59. Sachett, A., Bevilaqua, F., Chitolina, R., Garbinato, C., Gasparetto, H., Dal Magro, J., Conterato, G. M., & Siebel, A. M. (2018). Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. Journal of Toxicology and Environmental Health, Part A, 81(7), 194-201. https://doi.org/10.1080/15287394.2018.1434848 - PubMed
  60. Sachett, A., Gallas-Lopes, M., Benvenutti, R., Conterato, G. M., Herrmann, A. P., & Piato, A. (2020a). How to prepare zebrafish brain tissue samples for biochemical assays. Protocols.io. https://doi.org/10.17504/protocols.io.bjkdkks6 - PubMed
  61. Sachett, A., Gallas-Lopes, M., Conterato, G. M. M., Benvenutti, R., Herrmann, A. P., & Piato, A. (2020b). Protein quantification protocol optimized for zebrafish brain tissue (Bradford method). Protocols.io. https://doi.org/10.17504/protocols.io.bjnfkmbn - PubMed
  62. Sachett, A., Gallas-Lopes, M., Conterato, G. M. M., Benvenutti, R., Herrmann, A. P., & Piato, A. (2020c). Quantification of nonprotein sulfhydryl groups (NPSH) optimized for zebrafish brain tissue. Protocols..io.. https://doi.org/10.17504/protocols.io.bjrkkm4w - PubMed
  63. Sachett, A., Gallas-Lopes, M., Conterato, G. M. M., Benvenutti, R., Herrmann, A. P., & Piato, A. (2020d). Quantification of thiobarbituric acid reactive species (TBARS) optimized for zebrafish brain tissue. Protocols.io., https://doi.org/10.17504/protocols.io.bjp8kmrw - PubMed
  64. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864 - PubMed
  65. Seibt, K. J., Piato, A. L., da Luz Oliveira, R., Capiotti, K. M., Vianna, M. R., & Bonan, C. D. (2011). Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio). Behavioural Brain Research, 224(1), 135-139. https://doi.org/10.1016/j.bbr.2011.05.034 - PubMed
  66. Sison, M., & Gerlai, R. (2011). Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behavioural Brain Research, 220(2), 331-337. https://doi.org/10.1016/j.bbr.2011.02.019 - PubMed
  67. Steullet, P., Cabungcal, J.-H., Kulak, A., Kraftsik, R., Chen, Y., Dalton, T. P., Cuenod, M., & Do, K. Q. (2010). Redox dysregulation affects the ventral but not dorsal hippocampus: Impairment of parvalbumin neurons, gamma oscillations, and related behaviors. Journal of Neuroscience, 30(7), 2547-2558. https://doi.org/10.1523/JNEUROSCI.3857-09.2010 - PubMed
  68. Tang, Y., Horikoshi, M., & Li, W. (2016). ggfortify: Unified interface to visualize statistical result of popular R packages. http://www.r-project.org - PubMed
  69. Tenn, C. C., Fletcher, P. J., & Kapur, S. (2005). A putative animal model of the “prodromal” state of schizophrenia. Biological Psychiatry, 57(6), 586-593. https://doi.org/10.1016/j.biopsych.2004.12.013 - PubMed
  70. Tran, S., Muraleetharan, A., Fulcher, N., Chatterjee, D., & Gerlai, R. (2016). MK-801 increases locomotor activity in a context-dependent manner in zebrafish. Behavioural Brain Research, 296, 26-29. https://doi.org/10.1016/j.bbr.2015.08.029 - PubMed
  71. Wang, X., Pinto-Duarte, A., Sejnowski, T. J., & Behrens, M. M. (2012). How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxidants & Redox Signaling, 18(12), 1444-1462. https://doi.org/10.1089/ars.2012.4907 - PubMed
  72. Weber-Stadlbauer, U., & Meyer, U. (2019). Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Current Opinion in Behavioral Sciences, 28, 119-128. https://doi.org/10.1016/j.cobeha.2019.02.006 - PubMed
  73. Wei, T., & Simko, V. (2017). R package “corrplot”: Visualization of a correlation matrix. https://github.com/taiyun/corrplot - PubMed
  74. Weickert, C. S., Fung, S. J., Catts, V. S., Schofield, P. R., Allen, K. M., Moore, L. T., Newell, K. A., Pellen, D., Huang, X.-F., Catts, S. V., & Weickert, T. W. (2013). Molecular evidence of N-methyl-d-aspartate receptor hypofunction in schizophrenia. Molecular Psychiatry, 18(11), 1185-1192. https://doi.org/10.1038/mp.2012.137 - PubMed
  75. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org - PubMed
  76. Wickham, H., Hester, J., & Chang, W. (2019). devtools: Tools to make developing R packages easier. https://cran.r-project.org/package=devtools - PubMed
  77. Zimmermann, F. F., Gaspary, K. V., Siebel, A. M., & Bonan, C. D. (2016). Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behavioural Brain Research, 311, 368-374. https://doi.org/10.1016/j.bbr.2016.05.059 - PubMed

Publication Types

Grant support