Display options
Share it on

Drug Dev Res. 2021 Sep 01; doi: 10.1002/ddr.21875. Epub 2021 Sep 01.

Design and testing of selective inactivators against an antifungal enzyme target.

Drug development research

Samantha N Friday, Daniel W Cheng, Sebastian G Zagler, Brady S Zanella, Jordan D Dietz, Christopher N Calbat, Logan T Roach, Cindy Bagnal, Ian S Faile, Christopher J Halkides, Ronald E Viola

Affiliations

  1. Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA.
  2. Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA.

PMID: 34469014 DOI: 10.1002/ddr.21875

Abstract

Systemic infections from fungal organisms are becoming increasingly difficult to treat as drug resistance continues to emerge. To substantially expand the antifungal drug landscape new compounds must be identified and developed with novel modes of action against previously untested drug targets. Most drugs block the activity of their targets through reversible, noncovalent interactions. However, a significant number of drugs form irreversible, covalent bonds with their selected targets. While more challenging to develop, these irreversible inactivators offer some significant advantages as novel antifungal agents. Vinyl sulfones contain a potentially reactive functional group that could function as a selective enzyme inactivator, and members of this class of compounds are now being developed as inactivators against an antifungal drug target. The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in an essential microbial pathway and is essential for the survival of every microorganism examined. A series of vinyl sulfones have been designed, guided by molecular modeling and docking studies to enhance their affinity for fungal ASADHs. These newly synthesized compounds have been examined against this target enzyme from the pathogenic fungal organism Candida albicans. Vinyl sulfones containing complementary structural elements inhibit this enzyme with inhibition constants in the low-micromolar range. These inhibitors have also led to the rapid and irreversible inactivation of this enzyme, and show some initial selectivity when compared to the inactivation of a bacterial ASADH. The best inactivators will serve as lead compounds for the development of potent and selective antifungal agents.

© 2021 Wiley Periodicals LLC.

Keywords: antifungal agents; aspartate semialdehyde dehydrogenase; enzyme inactivators; enzyme inhibitors; vinyl sulfones

References

  1. Arachea, B. T., Liu, X., Pavlovsky, A., & Viola, R. E. (2010). Expansion of the aspartate-β-semialdehyde dehydrogenase family: The first structure of a fungal ortholog. Acta Crystallographica, D66, 205-212. - PubMed
  2. Ashburn, B. O., Rathbone, L. K., Camp, E. H., & Carter, R. G. (2008). A Diels-Alder approach to biaryls (DAB): Synthesis of the western portion of TMC-95. Tetrahedron, 64, 856-865. - PubMed
  3. Bauer, R. A. (2015). Covalent inhibitors in drug discovery: From accidental discoveries to avoided liabilities and designed therapies. Drug Discovery Today, 20, 1061-1073. - PubMed
  4. Becker, D., Selbach, M., Rollenhagen, C., Ballmaier, M., Meyer, T. F., Mann, M., & Bumann, D. (2006). Robust salmonella metabolism limits possibilities for new antimicrobials. Nature, 440, 303-307. - PubMed
  5. Bianco, G., Forli, S., Goodsell, D. S., & Olson, A. J. (2016). Covalent docking using Autodock: Two-point attractor and flexible side chain methods. Protein Science, 25, 295-301. - PubMed
  6. Black, S., & Wright, N. G. (1955). Aspartate semialdehyde dehydrogenase and aspartate semialdehyde. Journal of Biological Chemistry, 213, 39-50. - PubMed
  7. Blumenkopf, T. A. (2006). An efficient preparation of diethyl phenylsulfonylmethyl-phosphonate. Synthetic Communications, 16, 139-147. - PubMed
  8. Brown, G. D., Denning, D. W., Gow, N. A. R., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: Human fungal infections. Science Translational Medicine, 4, 165rv113. - PubMed
  9. Dahal, G., & Viola, R. E. (2018a). A fragment library screening approach to identify selective inhibitors against a fungal enzyme. SLAS Discovery, 23, 520-531. - PubMed
  10. Dahal, G. P., & Viola, R. E. (2018b). Insights into inhibitor binding to a fungal ortholog of aspartate semialdehyde dehydrogenase. Biochemical and Biophysical Research Communication, 503, 2848-2854. - PubMed
  11. De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A. K., & Moitessier, N. (2017). Covalent inhibitors design and discovery. European Journal of Medicinal Chemistry, 138, 96-114. - PubMed
  12. Dixon, M. (1953). The determination of enzyme inhibitor constants. Biochemical Journal, 55, 170-171. - PubMed
  13. Frankel, B. A., Bentley, M., Kruger, R. G., & McCafferty, D. G. (2004). Vinyl sulfones: Inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. Journal of the American Chemical Society, 126, 3404-3405. - PubMed
  14. Gao, G., Liu, X., Pavlovsky, A., & Viola, R. E. (2010). Identification of selective enzyme inhibitors by fragment library screening. Journal of Biomolecular Screening, 15, 1042-1050. - PubMed
  15. Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., … Osterman, A. L. (2003). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. Journal of Bacteriology, 185, 5673-5684. - PubMed
  16. Ghosh, A. K., Samanta, I., Mondal, A., & Liu, W. R. (2019). Covalent inhibition in drug discovery. ChemMedChem, 14, 889-906. - PubMed
  17. Glória, P. M., Coutinho, I., Gonçalves, L. M., Baptista, C., Soares, J., Newton, A. S., … Santos, M. M. (2011). Aspartic vinyl sulfones: Inhibitors of a caspase-3-dependent pathway. European Journal of Medicinal Chemistry, 46, 2141-2146. - PubMed
  18. Hasenoehrl, E. J., Rae Sajorda, D., Berney-Meyer, L., Johnson, S., Tufariello, J. M., Fuhrer, T., Cook, G. M., Jacobs, W. R., Jr., & Berney, M. (2019). Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nature Communications, 10, 4215. - PubMed
  19. Hopper, M., Gururaja, T., Kinoshita, T., Dean, J. P., Hill, R. J., & Mongan, A. (2020). Relative selectivity of covalent inhibitors requires assessment of inactivation kinetics and cellular occupancy: A case study of ibrutinib and acalabrutinib. Journal of Pharmacology and Experimental Therapeutics, 372, 331-338. - PubMed
  20. Kerr, I. D., Lee, J. H., Farady, C. J., Marion, R., Rickert, M., Sajid, M., Pandey, K. C., Caffrey, C. R., Legac, J., Hansell, E., McKerrow, J. H., Craik, C. S., Rosenthal, P. J., & Brinen, L. S. (2009). Vinyl sulfones as antiparasitic agents and a structural basis for drug design. Journal of Biological Chemistry, 284, 25697-25703. - PubMed
  21. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amanti, G., Andersen, K. K., Amaud, M., … Ogasawara, N. (2003). Essential Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 4678-4683. - PubMed
  22. Krantz, A. (1992). A classification of enzyme inhibitors. Bioorganic and Medicinal Chemistry Letters, 2, 1327-1334. - PubMed
  23. Lanman, B. A., Allen, J. R., Allen, J. G., Amegadzie, A. K., Ashton, K. S., Booker, S. K., Chen, J. J., Chen, N., Frohn, M. J., Goodman, G., Kopecky, D. J., Liu, L., Lopez, P., Low, J. D., Ma, V., Minatti, A. E., Nguyen, T. T., Nishimura, N., Pickrell, A. J., … Cee, V. J. (2020). Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. Journal of Medicinal Chemistry, 63, 52-65. - PubMed
  24. Lee, J. T., Chen, D. Y., Yang, Z., Ramos, A. D., Hsieh, J. J., & Bogyo, M. (2009). Design, syntheses, and evaluation of taspase1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 19, 5086-5090. - PubMed
  25. Liu, S., Zhou, B., Yang, H., He, Y., Jiang, Z.-X., Kumar, S., Wu, L., & Zhang, Z.-Y. (2008). Aryl vinyl sulfonates and sulfones as active site-directed and mechanism-based probes for protein tyrosine phosphatases. Journal of the American Chemical Society, 130, 8251-8260. - PubMed
  26. Lockhart, S. R., Etienne, K. A., Vallabhaneni, S., Farooqi, J., Chowdhary, A., Govender, N. P., … Litvintseva, A. P. (2016). Simultaneous emergence of multidrug-resistant Candida auris on three continents confirmed by whole-genome sequencing and epidemiological analyses. Clinical Infectious Diseases, 64, 134-140. - PubMed
  27. Luniwal, A., Wang, L., Pavlovsky, A., Erhardt, P. W., & Viola, R. E. (2012). Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase. Bioorganic and Medicinal Chemistry, 20, 2950-2956. - PubMed
  28. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785-2791. - PubMed
  29. Newton, A. S., Glória, P. M. C., Gonçalves, L. M., dos Santos, D. J. V. A., Moreira, R., Guedes, R. C., & Santos, M. M. M. (2010). Synthesis and evaluation of vinyl sulfones as caspase-3 inhibitors: A structure-activity study. European Journal of Medicinal Chemistry, 45, 3858-3863. - PubMed
  30. O'Meara, T. R., Veri, A. O., Ketela, T., Jiang, B., Roemer, T., & Cowen, L. E. (2015). Global analysis of fungal morphology exposes mechanisms of host cell escape. Nature Communications, 6, 6741. - PubMed
  31. Palmer, J. T., Rasnick, D., Klaus, J. L., & Bromme, D. (1995). Vinyl sulfones as mechanism-based cysteine protease inhibitors. Journal of Medicinal Chemistry, 38, 3193-3196. - PubMed
  32. Pavlovsky, A., Liu, X., Faehnle, C. R., Potente, N., & Viola, R. E. (2012). Structural characterization of inhibitors with selectivity against members of a homologous enzyme family. Chemical Biology and Drug Design, 79, 128-136. - PubMed
  33. Pavlovsky, A., Thangavelu, B., Bhansali, P., & Viola, R. E. (2014). A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate biosynthetic pathway. Acta Crystallographica, D70, 3244-3252. - PubMed
  34. Robertson, J. G. (2005). Mechanistic basis of enzyme-targeted drugs. Biochemistry, 44, 5561-5571. - PubMed
  35. Schwartz, P. A., Kuzmic, P., Solowiej, J., Bergqvist, S., Bolanos, B., Almaden, C., … Murray, B. W. (2014). Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proceedings of the National Academy of the United States of America, 111, 173-178. - PubMed
  36. Singh, J., Petter, R. C., Baillie, T. A., & Whitty, A. (2011). The resurgence of covalent drugs. Nature Reviews in Drug Discovery, 10, 307-317. - PubMed
  37. Sok, D. E., Choi, D. S., Kim, Y. B., Lee, Y. H., & Cha, S. H. (1993). Selective inactivation of glyceraldehyde-3-phosphate dehydrogenase by vinyl sulfones. Biochemical and Biophysical Research Communications, 195, 1224-1229. - PubMed
  38. Strelow, J. M. (2017). A perspective on the kinetics of covalent and irreversible inhibition. SLAS Discovery, 22, 3-20. - PubMed
  39. Sutanto, F., Konstantinidou, M., & Dömling, A. (2020). Covalent inhibitors: A rational approach to drug discovery. RSC Medicinal Chemistry, 11, 876-884. - PubMed
  40. Thangavelu, B., Bhansali, P., & Viola, R. E. (2015). Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors. Bioorganic and Medicinal Chemistry, 23, 6622-6631. - PubMed
  41. Trofa, D., Gácser, A., & Nosanchuk, J. D. (2008). Candida parapsilosis, an emerging fungal pathogen. Clinical Microbiology Reviews, 21, 606-625. - PubMed
  42. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455-461. - PubMed
  43. Viola, R. E. (2001). The central enzymes of the aspartate family of amino acid biosynthesis. Accounts of Chemical Research, 34, 339-349. - PubMed
  44. Viola, R. E., Liu, X., Ohren, J. F., & Faehnle, C. R. (2008). Structure of a redundant enzyme. The second isoform of aspartate β-semialdehyde dehydrogenase from vibrio cholerae. Acta Crystallographica, D64, 321-330. - PubMed

Publication Types

Grant support