Display options
Share it on

J Neuropathol Exp Neurol. 2021 Oct 26;80(10):955-965. doi: 10.1093/jnen/nlab088.

High-Throughput Digital Image Analysis Reveals Distinct Patterns of Dystrophin Expression in Dystrophinopathy Patients.

Journal of neuropathology and experimental neurology

Silvia Torelli, Domenic Scaglioni, Valentina Sardone, Matthew J Ellis, Joana Domingos, Adam Jones, Lucy Feng, Darren Chambers, Deborah M Eastwood, France Leturcq, Rabah Ben Yaou, Andoni Urtizberea, Pascal Sabouraud, Christine Barnerias, Tanya Stojkovic, Enzo Ricci, Maud Beuvin, Gisele Bonne, Caroline A Sewry, Tracey Willis, Richa Kulshrestha, Giorgio Tasca, Rahul Phadke, Jennifer E Morgan, Francesco Muntoni

Affiliations

  1. From the Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
  2. NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
  3. Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology & Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
  4. Department of Orthopaedics, Great Ormond Street Hospital, London, UK.
  5. The Royal National Orthopaedic Hospital, Stanmore and University College London, London, UK.
  6. APHP, Laboratoire de Génétique et Biologie Moléculaire, HUPC Hôpital Cochin, Paris, France.
  7. APHP-Sorbonne Université, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.
  8. Sorbonne Université, Inserm, Institut de Myologie, Center de Recherche en Myologie, Paris, France.
  9. APHP-Hôpital Marin de Hendaye, Hendaye, France.
  10. CHU de Reims-American Memorial Hospital, Reims, France.
  11. Department of Pediatric Neurology, Necker Enfants Maladies Hospital, Paris, France.
  12. Institute of Neurology, Catholic University, Rome, Italy.
  13. Wolfson Centre for Inherited Neuromuscular Diseases and Department of Musculoskeletal Histopathology, RJAH Orthopaedic Hospital, Oswestry, UK.
  14. UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
  15. Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK.
  16. School of Cancer Sciences, University of Southampton, Southampton, UK.

PMID: 34498054 PMCID: PMC8557329 DOI: 10.1093/jnen/nlab088

Abstract

Duchenne muscular dystrophy (DMD) is an incurable disease caused by out-of-frame DMD gene deletions while in frame deletions lead to the milder Becker muscular dystrophy (BMD). In the last decade several antisense oligonucleotides drugs have been developed to induce a partially functional internally deleted dystrophin, similar to that produced in BMD, and expected to ameliorate the disease course. The pattern of dystrophin expression and functionality in dystrophinopathy patients is variable due to multiple factors, such as molecular functionality of the dystrophin and its distribution. To benchmark the success of therapeutic intervention, a clear understanding of dystrophin expression patterns in dystrophinopathy patients is vital. Recently, several groups have used innovative techniques to quantify dystrophin in muscle biopsies of children but not in patients with milder BMD. This study reports on dystrophin expression using both Western blotting and an automated, high-throughput, image analysis platform in DMD, BMD, and intermediate DMD/BMD skeletal muscle biopsies. Our results found a significant correlation between Western blot and immunofluorescent quantification indicating consistency between the different methodologies. However, we identified significant inter- and intradisease heterogeneity of patterns of dystrophin expression in patients irrespective of the amount detected on blot, due to variability in both fluorescence intensity and dystrophin sarcolemmal circumference coverage. Our data highlight the heterogeneity of the pattern of dystrophin expression in BMD, which will assist the assessment of dystrophin restoration therapies.

© 2021 American Association of Neuropathologists, Inc.

Keywords: Becker muscular dystrophy; Duchenne muscular dystrophy; Dystrophin; High–throughput digital analysis; Muscle biopsy; Skeletal muscle

References

  1. Cancer Commun (Lond). 2020 Apr;40(4):135-153 - PubMed
  2. J Neurol. 2011 Sep;258(9):1610-23 - PubMed
  3. PLoS One. 2014 Sep 22;9(9):e107494 - PubMed
  4. PLoS One. 2018 Mar 26;13(3):e0194540 - PubMed
  5. Muscle Nerve. 2001 Dec;24(12):1575-94 - PubMed
  6. J Mass Spectrom. 2020 Feb;55(2):e4437 - PubMed
  7. Acta Neuropathol Commun. 2020 Apr 17;8(1):53 - PubMed
  8. Neuromuscul Disord. 2007 Dec;17(11-12):913-8 - PubMed
  9. Neurology. 2014 Nov 25;83(22):2062-9 - PubMed
  10. J Clin Med. 2019 May 10;8(5): - PubMed
  11. Neuropathol Appl Neurobiol. 2012 Oct;38(6):591-601 - PubMed
  12. Int J Mol Sci. 2018 May 23;19(6): - PubMed
  13. Sci Rep. 2021 Mar 15;11(1):5952 - PubMed
  14. Ann Neurol. 2021 Feb;89(2):280-292 - PubMed
  15. J Cachexia Sarcopenia Muscle. 2020 Apr;11(2):578-593 - PubMed
  16. J Neuromuscul Dis. 2019;6(1):147-159 - PubMed
  17. Sci Rep. 2021 Jan 13;11(1):1128 - PubMed
  18. Methods. 2014 Nov;70(1):46-58 - PubMed
  19. PLoS One. 2013;8(3):e59916 - PubMed
  20. PLoS One. 2018 Apr 11;13(4):e0195850 - PubMed
  21. Neurol Clin. 2014 Aug;32(3):671-88, viii - PubMed
  22. J Pers Med. 2019 Jan 07;9(1): - PubMed
  23. Neuropathol Appl Neurobiol. 2010 Jun;36(4):265-74 - PubMed
  24. JAMA Neurol. 2014 Jan;71(1):32-40 - PubMed
  25. Lancet Neurol. 2003 Dec;2(12):731-40 - PubMed
  26. Neurology. 2020 May 26;94(21):e2270-e2282 - PubMed
  27. JAMA Neurol. 2020 Aug 1;77(8):982-991 - PubMed
  28. Arch Pathol Lab Med. 2019 Feb;143(2):197-205 - PubMed
  29. J Neurol Neurosurg Psychiatry. 2014 Jul;85(7):747-53 - PubMed

Publication Types

Grant support