Display options
Share it on

Commun Biol. 2021 Sep 01;4(1):1027. doi: 10.1038/s42003-021-02464-9.

A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes.

Communications biology

Nikita A Khlystov, Yasuo Yoshikuni, Samuel Deutsch, Elizabeth S Sattely

Affiliations

  1. Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  2. U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  3. Department of Chemical Engineering, Stanford University, Stanford, CA, USA. [email protected].
  4. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. [email protected].

PMID: 34471192 PMCID: PMC8410833 DOI: 10.1038/s42003-021-02464-9

Abstract

Lignin has significant potential as an abundant and renewable source for commodity chemicals yet remains vastly underutilized. Efforts towards engineering a biochemical route to the valorization of lignin are currently limited by the lack of a suitable heterologous host for the production of lignin-degrading enzymes. Here, we show that expression of fungal genes in Nicotiana benthamiana enables production of members from seven major classes of enzymes associated with lignin degradation (23 of 35 tested) in soluble form for direct use in lignin activity assays. We combinatorially characterized a subset of these enzymes in the context of model lignin dimer oxidation, revealing that fine-tuned coupling of peroxide-generators to peroxidases results in more extensive C-C bond cleavage compared to direct addition of peroxide. Comparison of peroxidase isoform activity revealed that the extent of C-C bond cleavage depends on peroxidase identity, suggesting that peroxidases are individually specialized in the context of lignin oxidation. We anticipate the use of N. benthamiana as a platform to rapidly produce a diverse array of fungal lignin-degrading enzymes will facilitate a better understanding of their concerted role in nature and unlock their potential for lignin valorization, including within the plant host itself.

© 2021. The Author(s).

References

  1. J Biol Chem. 2015 Dec 18;290(51):30268 - PubMed
  2. Methods Enzymol. 1991;194:428-53 - PubMed
  3. Biotechnol Prog. 1999 May-Jun;15(3):467-71 - PubMed
  4. Appl Environ Microbiol. 1994 Jul;60(7):2524-32 - PubMed
  5. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8 - PubMed
  6. Appl Environ Microbiol. 2000 Jul;66(7):3016-23 - PubMed
  7. Appl Environ Microbiol. 1997 Mar;63(3):857-61 - PubMed
  8. Front Plant Sci. 2019 Jul 25;10:912 - PubMed
  9. Biotechnol Biofuels. 2014 Jan 03;7(1):2 - PubMed
  10. J Biol Chem. 1992 Nov 25;267(33):23688-95 - PubMed
  11. Plant Biotechnol J. 2017 May;15(5):581-593 - PubMed
  12. Curr Opin Plant Biol. 2008 Jun;11(3):349-55 - PubMed
  13. FEBS Open Bio. 2013 Nov 05;3:496-504 - PubMed
  14. Appl Environ Microbiol. 1983 Jun;45(6):1795-801 - PubMed
  15. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6428-6433 - PubMed
  16. Bioengineered. 2016 Apr;7(3):145-54 - PubMed
  17. J Vis Exp. 2014 Dec 19;(94): - PubMed
  18. Science. 2012 Jun 29;336(6089):1715-9 - PubMed
  19. Biotechnol Bioeng. 2009 Aug 15;103(6):1192-201 - PubMed
  20. Mol Plant Microbe Interact. 2008 Aug;21(8):1015-26 - PubMed
  21. Appl Environ Microbiol. 2017 Jun 30;83(14): - PubMed
  22. J Biol Chem. 2001 Jun 22;276(25):22985-90 - PubMed
  23. Appl Microbiol Biotechnol. 2012 Feb;93(4):1395-410 - PubMed
  24. Bio Protoc. 2015;5(18): - PubMed
  25. Science. 2015 Sep 11;349(6253):1224-8 - PubMed
  26. J Biol Chem. 1993 Jun 15;268(17):12274-81 - PubMed
  27. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13809-14 - PubMed
  28. Biochem J. 1986 May 15;236(1):279-87 - PubMed
  29. Appl Microbiol Biotechnol. 2001 Aug;56(3-4):296-314 - PubMed
  30. Mol Biosyst. 2010 May;6(5):815-21 - PubMed
  31. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40 - PubMed
  32. Science. 2014 May 16;344(6185):1246843 - PubMed
  33. Eur J Biochem. 1996 Apr 15;237(2):424-32 - PubMed
  34. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19504-9 - PubMed
  35. FEMS Microbiol Rev. 2017 Nov 1;41(6):941-962 - PubMed
  36. Protein Eng. 2000 May;13(5):377-84 - PubMed
  37. Sci Rep. 2017 Dec 6;7(1):17104 - PubMed
  38. Theor Appl Genet. 1970 Jan;40(1):18-25 - PubMed
  39. Science. 1983 Aug 12;221(4611):661-3 - PubMed
  40. Plant Biotechnol J. 2009 Sep;7(7):682-93 - PubMed
  41. Sci Adv. 2018 Apr 11;4(4):eaar5459 - PubMed
  42. Biochem J. 1990 Jun 1;268(2):475-80 - PubMed
  43. J Biol Chem. 1990 Feb 5;265(4):2070-7 - PubMed
  44. Nat Biotechnol. 2004 Jun;22(6):695-700 - PubMed
  45. Biotechnol Bioeng. 2018 Jul;115(7):1666-1674 - PubMed
  46. J Biol Chem. 2012 May 11;287(20):16903-16 - PubMed

Publication Types

Grant support