Display options
Share it on

Diagnostics (Basel). 2021 Jul 22;11(8). doi: 10.3390/diagnostics11081315.

Quantitative Multispectral Imaging Differentiates Melanoma from Seborrheic Keratosis.

Diagnostics (Basel, Switzerland)

Szabolcs Bozsányi, Klára Farkas, András Bánvölgyi, Kende Lőrincz, Luca Fésűs, Pálma Anker, Sára Zakariás, Antal Jobbágy, Ilze Lihacova, Alexey Lihachev, Marta Lange, Dmitrijs Bliznuks, Márta Medvecz, Norbert Kiss, Norbert M Wikonkál

Affiliations

  1. Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary.
  2. Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia.
  3. Faculty of Computer Science and Information Technology, Riga Technical University, LV-1048 Riga, Latvia.

PMID: 34441250 PMCID: PMC8392390 DOI: 10.3390/diagnostics11081315

Abstract

Melanoma is a melanocytic tumor that is responsible for the most skin cancer-related deaths. By contrast, seborrheic keratosis (SK) is a very common benign lesion with a clinical picture that may resemble melanoma. We used a multispectral imaging device to distinguish these two entities, with the use of autofluorescence imaging with 405 nm and diffuse reflectance imaging with 525 and 660 narrow-band LED illumination. We analyzed intensity descriptors of the acquired images. These included ratios of intensity values of different channels, standard deviation and minimum/maximum values of intensity of the lesions. The pattern of the lesions was also assessed with the use of particle analysis. We found significantly higher intensity values in SKs compared with melanoma, especially with the use of the autofluorescence channel. Moreover, we found a significantly higher number of particles with high fluorescence in SKs. We created a parameter, the SK index, using these values to differentiate melanoma from SK with a sensitivity of 91.9% and specificity of 57.0%. In conclusion, this imaging technique is potentially applicable to distinguish melanoma from SK based on the analysis of various quantitative parameters. For this application, multispectral imaging could be used as a screening tool by general physicians and non-experts in the everyday practice.

Keywords: LED; autofluorescence imaging; dermoscopy; diagnosis; diffuse reflectance imaging; melanoma; quantitative analysis; seborrheic keratosis

References

  1. J Dermatol. 2017 May;44(5):518-524 - PubMed
  2. JAMA Dermatol. 2017 Jun 1;153(6):544-551 - PubMed
  3. Dermatology. 2017;233(6):471-479 - PubMed
  4. Sensors (Basel). 2017 May 19;17(5): - PubMed
  5. Int J Burns Trauma. 2017 Dec 20;7(7):124-141 - PubMed
  6. Lancet. 2018 Sep 15;392(10151):971-984 - PubMed
  7. Photochem Photobiol. 2008 Nov-Dec;84(6):1421-30 - PubMed
  8. Br J Dermatol. 2016 Oct;175(4):744-50 - PubMed
  9. J Biomed Opt. 2006 May-Jun;11(3):34010 - PubMed
  10. J Am Acad Dermatol. 2008 May;58(5):875-80 - PubMed
  11. Oral Oncol. 2017 Dec;75:67-74 - PubMed
  12. Arch Dermatol. 2002 Dec;138(12):1562-6 - PubMed
  13. Lasers Surg Med. 2017 Nov;49(9):866-873 - PubMed
  14. Am J Dermatopathol. 1990 Oct;12(5):446-51 - PubMed
  15. J Am Acad Dermatol. 2015 Jun;72(6):943-58; quiz 959-60 - PubMed
  16. J Biomed Opt. 2008 Jan-Feb;13(1):014017 - PubMed
  17. Actas Dermosifiliogr. 2017 Jan - Feb;108(1):42-51 - PubMed
  18. W V Med J. 2015 Sep-Oct;111(5):22-8 - PubMed
  19. J Dermatol. 2011 Jan;38(1):59-65 - PubMed
  20. Sensors (Basel). 2021 Feb 05;21(4): - PubMed
  21. J Am Acad Dermatol. 2005 Dec;53(6):1071-4 - PubMed
  22. Arch Dermatol. 2002 Dec;138(12):1556-60 - PubMed
  23. Lancet Oncol. 2002 Mar;3(3):159-65 - PubMed
  24. Am J Dermatopathol. 1982 Oct;4(5):403-10 - PubMed
  25. J Eur Acad Dermatol Venereol. 2021 Jun 23;: - PubMed
  26. J Am Acad Dermatol. 2014 Jun;70(6):e121-3 - PubMed
  27. Arch Dermatol. 2007 Mar;143(3):373-6 - PubMed
  28. J Dermatol Sci. 2009 Oct;56(1):1-8 - PubMed
  29. Science. 1991 Nov 22;254(5035):1178-81 - PubMed
  30. J Invest Dermatol. 2016 Apr;136(4):e33-e38 - PubMed
  31. J Biophotonics. 2020 Mar;13(3):e201900162 - PubMed
  32. Exp Dermatol. 2021 May;30(5):652-663 - PubMed
  33. F1000Res. 2019 Aug 28;8: - PubMed
  34. J Invest Dermatol. 2019 Jan;139(1):25-30 - PubMed
  35. Skin Res Technol. 2019 Nov;25(6):801-804 - PubMed
  36. JAMA Dermatol. 2016 Jul 1;152(7):798-806 - PubMed
  37. Biomed Opt Express. 2018 Mar 23;9(4):1852-1858 - PubMed
  38. Pathol Oncol Res. 2019 Jul;25(3):1015-1021 - PubMed
  39. Surv Ophthalmol. 1992 May-Jun;36(6):429-38 - PubMed
  40. Pathol Oncol Res. 2018 Oct;24(4):927-930 - PubMed
  41. Tumour Biol. 2014 Apr;35(4):2871-82 - PubMed
  42. Diagnostics (Basel). 2021 Feb 08;11(2): - PubMed
  43. J Biomed Opt. 2015;20(12):120502 - PubMed
  44. Cochrane Database Syst Rev. 2018 Dec 04;12:CD013186 - PubMed
  45. Melanoma Res. 2015 Dec;25(6):537-42 - PubMed
  46. J Biomed Opt. 2011 Apr;16(4):040505 - PubMed
  47. Am Fam Physician. 2013 Oct 1;88(7):441-50 - PubMed
  48. Eur J Cancer. 2018 Dec;105:33-40 - PubMed
  49. Br J Dermatol. 2013 Jun;168(6):1224-9 - PubMed
  50. Eur J Dermatol. 2012 Jul-Aug;22(4):456-63 - PubMed
  51. J Am Acad Dermatol. 1987 Oct;17(4):571-83 - PubMed
  52. J Biomed Opt. 2011 Jun;16(6):060502 - PubMed
  53. J Biomed Opt. 2015 Sep;20(9):090503 - PubMed
  54. Dermatol Clin. 2001 Apr;19(2):221-58 - PubMed
  55. J Biomed Opt. 2013 Jul;18(7):76023 - PubMed
  56. J Am Acad Dermatol. 2001 Feb;44(2):207-18 - PubMed
  57. Medicine (Baltimore). 2016 Jul;95(29):e4332 - PubMed
  58. Phys Med Biol. 2005 Apr 21;50(8):1675-87 - PubMed

Publication Types

Grant support