Display options
Share it on

ACS Omega. 2021 Aug 13;6(33):21595-21603. doi: 10.1021/acsomega.1c02825. eCollection 2021 Aug 24.

Revisiting the Balz-Schiemann Reaction of Aryldiazonium Tetrafluoroborate in Different Solvents under Catalyst- and Additive-Free Conditions.

ACS omega

Lian Yang, Cheng-Pan Zhang

Affiliations

  1. School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.

PMID: 34471763 PMCID: PMC8388107 DOI: 10.1021/acsomega.1c02825

Abstract

The thermal and photochemical Balz-Schiemann reaction in commonly used solvents was revisited under catalyst- and additive-free conditions. The study showed that using low- or non-polar solvents could improve the pyrolysis and photolysis of aryldiazonium tetrafluoroborates, enabling effective fluorination at a low temperature or under visible-light irradiation. PhCl and hexane were exemplified as cheap and reliable solvents for both reactions, providing good to excellent yields of aryl fluorides from the corresponding diazonium tetrafluoroborates. The combination of slight heating with visible-light irradiation was beneficial for the transformation of stable aryldiazonium tetrafluoroborates. Nevertheless, the electronic and steric nature of aryldiazonium tetrafluoroborates still had a pivotal effect on both fluorinations even in these solvents.

© 2021 The Authors. Published by American Chemical Society.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Acc Chem Res. 2017 Sep 19;50(9):2401-2409 - PubMed
  2. Angew Chem Int Ed Engl. 2016 Sep 19;55(39):11907-11 - PubMed
  3. Angew Chem Int Ed Engl. 2019 Oct 14;58(42):14824-14848 - PubMed
  4. Chempluschem. 2014 Feb;79(2):257-265 - PubMed
  5. Chemistry. 2018 Oct 9;24(56):14933-14937 - PubMed
  6. J Org Chem. 2005 Jan 21;70(2):603-10 - PubMed
  7. J Org Chem. 2012 Aug 3;77(15):6608-14 - PubMed
  8. Acc Chem Res. 2016 Oct 18;49(10):2146-2157 - PubMed
  9. J Am Chem Soc. 2020 Mar 4;142(9):4341-4348 - PubMed
  10. Angew Chem Int Ed Engl. 2010 Aug 9;49(34):5986-8 - PubMed
  11. Angew Chem Int Ed Engl. 2011 Sep 26;50(40):9429-32 - PubMed
  12. J Fluor Chem. 2007 Jun;128(6):674-678 - PubMed
  13. Mol Divers. 2020 Nov;24(4):903-911 - PubMed
  14. Acc Chem Res. 2018 Feb 20;51(2):496-506 - PubMed
  15. Bioorg Med Chem. 2003 Aug 5;11(16):3457-74 - PubMed
  16. Acc Chem Res. 2020 Oct 20;53(10):2372-2383 - PubMed
  17. J Med Chem. 2020 Jun 25;63(12):6315-6386 - PubMed
  18. Chem Rev. 2015 Jan 28;115(2):566-611 - PubMed
  19. Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9896-9900 - PubMed
  20. Org Lett. 2020 Aug 7;22(15):6182-6186 - PubMed
  21. Org Lett. 2018 Oct 19;20(20):6480-6484 - PubMed
  22. J Am Chem Soc. 1973 Jul 11;95(14):4619-24 - PubMed
  23. J Am Chem Soc. 1973 Dec 12;95(25):8389-92 - PubMed
  24. Chem Commun (Camb). 2020 Jul 21;56(58):8143-8146 - PubMed
  25. Chem Rev. 2015 Aug 26;115(16):8835-66 - PubMed
  26. Org Lett. 2013 Oct 4;15(19):5134-7 - PubMed
  27. J Am Chem Soc. 1971 Jun 16;93(12):3060-1 - PubMed
  28. Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10463-7 - PubMed
  29. ACS Omega. 2020 Apr 22;5(19):10633-10640 - PubMed

Publication Types