Display options
Share it on

Sci Adv. 2021 Aug 20;7(34). doi: 10.1126/sciadv.abf8782. Print 2021 Aug.

Neuronal control of maternal provisioning in response to social cues.

Science advances

Jadiel A Wasson, Gareth Harris, Sabine Keppler-Ross, Trisha J Brock, Abdul R Dar, Rebecca A Butcher, Sylvia E J Fischer, Konstantinos Kagias, Jon Clardy, Yun Zhang, Susan E Mango

Affiliations

  1. Biozentrum, University of Basel, Basel, Switzerland.
  2. Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
  3. Department of Biology, California State University Channel Islands, Camarillo, CA, USA.
  4. InVivo Biosystems, Eugene, OR, USA.
  5. Department of Chemistry, University of Florida, Gainesville, FL, USA.
  6. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
  7. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA.
  8. Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA. [email protected] [email protected].
  9. Biozentrum, University of Basel, Basel, Switzerland. [email protected] [email protected].

PMID: 34417172 PMCID: PMC8378817 DOI: 10.1126/sciadv.abf8782

Abstract

Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Development. 2014 Apr;141(8):1767-79 - PubMed
  2. Genes Dev. 1995 Apr 15;9(8):956-71 - PubMed
  3. Mol Cell. 2017 Apr 20;66(2):194-205.e5 - PubMed
  4. WormBook. 2014 May 07;:1-49 - PubMed
  5. Development. 2019 Oct 10;146(19): - PubMed
  6. Nat Methods. 2014 May;11(5):529-34 - PubMed
  7. Nat Neurosci. 2003 Nov;6(11):1178-85 - PubMed
  8. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  9. Cancer Cell Int. 2020 Apr 29;20:142 - PubMed
  10. Science. 2009 Nov 13;326(5955):994-8 - PubMed
  11. Neuron. 2012 Aug 23;75(4):593-600 - PubMed
  12. Dev Biol. 2005 Oct 1;286(1):136-48 - PubMed
  13. Int J Biochem Cell Biol. 2011 Jan;43(1):47-59 - PubMed
  14. Mol Biol Cell. 2017 Jul 15;28(15):2042-2065 - PubMed
  15. Curr Biol. 2019 Jul 22;29(14):2380-2388.e5 - PubMed
  16. Front Physiol. 2019 Aug 21;10:1067 - PubMed
  17. Methods. 2003 Aug;30(4):313-21 - PubMed
  18. Nature. 2005 Feb 3;433(7025):541-5 - PubMed
  19. PLoS Genet. 2016 Oct 26;12(10):e1006396 - PubMed
  20. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3955-60 - PubMed
  21. Mech Dev. 2004 Mar;121(3):213-24 - PubMed
  22. PLoS Genet. 2011 Sep;7(9):e1002299 - PubMed
  23. Mol Gen Genet. 1985;198(3):534-6 - PubMed
  24. Trends Genet. 2013 Mar;29(3):176-86 - PubMed
  25. Nature. 2007 Feb 22;445(7130):922-6 - PubMed
  26. J Cell Sci. 2013 Feb 1;126(Pt 3):850-9 - PubMed
  27. Development. 1998 Apr;125(8):1561-8 - PubMed
  28. WormBook. 2008 Sep 25;:1-36 - PubMed
  29. Nature. 2008 Aug 28;454(7208):1115-8 - PubMed
  30. Genome Biol. 2014;15(12):550 - PubMed
  31. Dev Cell. 2012 May 15;22(5):1101-8 - PubMed
  32. Development. 2019 Jun 12;146(11): - PubMed
  33. Dev Cell. 2016 Aug 22;38(4):430-44 - PubMed
  34. Nucleic Acids Res. 2013 May 1;41(10):e108 - PubMed
  35. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2133-8 - PubMed
  36. Aging Cell. 2007 Feb;6(1):95-110 - PubMed
  37. Genes Dev. 1999 Jul 15;13(14):1780-93 - PubMed
  38. Nature. 2009 Apr 30;458(7242):1171-5 - PubMed
  39. Genetics. 2019 Oct;213(2):329-360 - PubMed
  40. Nat Protoc. 2008;3(6):1101-8 - PubMed
  41. Cell. 2015 Jan 15;160(1-2):119-31 - PubMed
  42. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1875-9 - PubMed
  43. Nat Neurosci. 2010 May;13(5):610-4 - PubMed
  44. Nat Neurosci. 2007 Jan;10(1):49-57 - PubMed
  45. J Neurosci. 2019 Oct 30;39(44):8617-8631 - PubMed
  46. WormBook. 2012 Dec 18;:1-13 - PubMed
  47. Nat Cell Biol. 2017 Mar;19(3):252-257 - PubMed
  48. Front Endocrinol (Lausanne). 2014 Jun 16;5:90 - PubMed
  49. WormBook. 2006 Feb 11;:1-11 - PubMed
  50. Nat Commun. 2019 Jul 18;10(1):3186 - PubMed
  51. Curr Top Dev Biol. 2015;113:305-49 - PubMed
  52. Nat Chem Biol. 2007 Jul;3(7):420-2 - PubMed
  53. Cell. 2019 Jun 13;177(7):1814-1826.e15 - PubMed
  54. Genetics. 1974 May;77(1):71-94 - PubMed
  55. Science. 2002 Feb 1;295(5556):821-5 - PubMed
  56. Proteome Sci. 2010 Sep 21;8:49 - PubMed
  57. J Neurochem. 2006 Sep;98(6):1999-2012 - PubMed
  58. Eur J Pharmacol. 2003 Feb 28;463(1-3):235-72 - PubMed
  59. Neuron. 1999 Oct;24(2):335-46 - PubMed
  60. J Cell Biol. 2005 Jun 20;169(6):871-84 - PubMed
  61. Aging Cell. 2007 Feb;6(1):111-9 - PubMed
  62. Genetics. 2007 Jul;176(3):1567-77 - PubMed
  63. EMBO J. 2018 Aug 1;37(15): - PubMed
  64. J Neurosci. 2007 Jun 6;27(23):6150-62 - PubMed
  65. Bioinformatics. 2015 Sep 1;31(17):2912-4 - PubMed
  66. WormBook. 2012 Dec 13;:1-16 - PubMed
  67. Sci Adv. 2018 Aug 22;4(8):eaat6224 - PubMed
  68. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  69. Nucleic Acids Res. 2016 Dec 15;44(22):e165 - PubMed
  70. Bioorg Med Chem. 2013 Sep 15;21(18):5754-69 - PubMed
  71. Nature. 2016 Nov 10;539(7628):254-258 - PubMed
  72. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14288-92 - PubMed
  73. Cell Cycle. 2006 Nov 1;5(21):2443-6 - PubMed

Publication Types

Grant support