Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2104420118.

Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d.

Proceedings of the National Academy of Sciences of the United States of America

Catarina F Almeida, Dylan G M Smith, Tan-Yun Cheng, Chris M Harpur, Elena Batleska, Catriona V Nguyen-Robertson, Tram Nguyen, Tamara Thelemann, Scott J J Reddiex, Shihan Li, Sidonia B G Eckle, Ildiko Van Rhijn, Jamie Rossjohn, Adam P Uldrich, D Branch Moody, Spencer J Williams, Daniel G Pellicci, Dale I Godfrey

Affiliations

  1. Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; [email protected] [email protected] [email protected] [email protected] [email protected].
  2. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia.
  3. School of Chemistry, The University of Melbourne, Melbourne, VIC 3052, Australia.
  4. Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia.
  5. Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115.
  6. Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
  7. Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, 3584CL Utrecht, Netherlands.
  8. Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
  9. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
  10. Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom.
  11. Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Boston, MA 02115; [email protected] [email protected] [email protected] [email protected] [email protected].
  12. Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3010, Australia; [email protected] [email protected] [email protected] [email protected] [email protected].
  13. Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.
  14. Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia.

PMID: 34417291 PMCID: PMC8403964 DOI: 10.1073/pnas.2104420118

Abstract

Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αβ T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αβTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.

Keywords: CD1d; PPBF; TCR; antigen; type II NKT

Conflict of interest statement

Competing interest statement: D.I.G. is a member of the scientific advisory board for Avalia Immunotherapies, a company that is developing natural killer T cell–based vaccines. I.V.R. and D.B.M. are h

References

  1. Nature. 2012 Jun 28;486(7404):554-8 - PubMed
  2. Nat Immunol. 2016 Oct;17(10):1159-66 - PubMed
  3. Chem Sci. 2020 Jan 14;11(8):2161-2168 - PubMed
  4. J Biol Chem. 2007 Aug 17;282(33):23799-810 - PubMed
  5. J Allergy Clin Immunol Pract. 2019 Sep - Oct;7(7):2151-2153 - PubMed
  6. Immunity. 2013 Dec 12;39(6):1032-42 - PubMed
  7. J Exp Med. 2021 Jul 5;218(7): - PubMed
  8. Mol Ther Methods Clin Dev. 2016 Jan 27;3:15054 - PubMed
  9. Nat Immunol. 2014 Feb;15(2):177-85 - PubMed
  10. Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1243-50 - PubMed
  11. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8348-8353 - PubMed
  12. Nat Commun. 2019 Nov 20;10(1):5242 - PubMed
  13. J Clin Invest. 2021 Jan 4;131(1): - PubMed
  14. Nat Immunol. 2012 Sep;13(9):857-63 - PubMed
  15. J Immunol. 2017 Feb 1;198(3):1015-1021 - PubMed
  16. Nature. 2007 Jul 5;448(7149):44-9 - PubMed
  17. Blood. 2013 Jan 17;121(3):423-30 - PubMed
  18. J Exp Med. 2006 Mar 20;203(3):661-73 - PubMed
  19. Bioorg Med Chem Lett. 2009 Aug 1;19(15):4122-5 - PubMed
  20. Immunology. 2009 Feb;126(2):147-64 - PubMed
  21. Eur J Immunol. 2009 Jul;39(7):1726-35 - PubMed
  22. Int Arch Allergy Immunol. 1997 May-Jul;113(1-3):177-80 - PubMed
  23. J Clin Invest. 2004 May;113(10):1490-7 - PubMed
  24. Nat Immunol. 2013 Nov;14(11):1137-45 - PubMed
  25. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19335-40 - PubMed
  26. Nat Rev Immunol. 2015 Oct;15(10):643-54 - PubMed
  27. Sci Immunol. 2020 Jan 3;5(43): - PubMed
  28. J Exp Med. 2004 Apr 5;199(7):947-57 - PubMed
  29. Nat Immunol. 2012 Sep;13(9):851-6 - PubMed
  30. Immunity. 2011 Mar 25;34(3):327-39 - PubMed
  31. Curr Opin Immunol. 2018 Jun;52:93-99 - PubMed
  32. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10302-7 - PubMed
  33. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1827-32 - PubMed
  34. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13578-83 - PubMed
  35. J Immunol. 2014 Nov 1;193(9):4580-9 - PubMed
  36. Allergy. 2020 Oct;75(10):2477-2490 - PubMed
  37. Nat Commun. 2016 Feb 15;7:10570 - PubMed
  38. J Exp Med. 2005 Dec 5;202(11):1517-26 - PubMed
  39. J Immunol. 2001 Nov 15;167(10):5531-4 - PubMed
  40. Bioorg Med Chem Lett. 2010 Jun 15;20(12):3475-8 - PubMed
  41. Scand J Immunol. 2000 Jul;52(1):71-9 - PubMed
  42. Immunity. 2000 Feb;12(2):211-21 - PubMed
  43. Nat Immunol. 2011 Jun 12;12(7):616-23 - PubMed
  44. J Immunol. 2002 Feb 15;168(4):1519-23 - PubMed
  45. Scand J Immunol. 2012 Sep;76(3):246-55 - PubMed
  46. J Exp Med. 2007 May 14;204(5):1131-44 - PubMed
  47. Annu Rev Pharmacol Toxicol. 2012;52:401-31 - PubMed
  48. Cancer Immunol Immunother. 2006 Sep;55(9):1142-50 - PubMed
  49. Nat Med. 2012 Jul;18(7):1060-8 - PubMed
  50. Science. 1997 Nov 28;278(5343):1626-9 - PubMed
  51. Nat Immunol. 2015 Nov;16(11):1114-23 - PubMed
  52. Immunity. 2009 Jul 17;31(1):47-59 - PubMed
  53. J Allergy Clin Immunol Pract. 2019 Sep - Oct;7(7):2116-2123 - PubMed
  54. J Exp Med. 2014 Dec 15;211(13):2599-615 - PubMed
  55. J Clin Invest. 2011 Jan;121(1):288-95 - PubMed
  56. Eur J Immunol. 2012 Sep;42(9):2505-10 - PubMed
  57. Nat Immunol. 2015 Mar;16(3):258-66 - PubMed

Publication Types

Grant support