Display options
Share it on

Brain Struct Funct. 2021 Dec;226(9):2869-2880. doi: 10.1007/s00429-021-02363-z. Epub 2021 Aug 21.

Myelin densities in retinotopically defined dorsal visual areas of the macaque.

Brain structure & function

Xiaolian Li, Qi Zhu, Wim Vanduffel

Affiliations

  1. Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000, Leuven, Belgium.
  2. Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000, Leuven, Belgium. [email protected].
  3. Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France. [email protected].
  4. Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000, Leuven, Belgium. [email protected].
  5. Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium. [email protected].
  6. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA. [email protected].
  7. Department of Radiology, Harvard Medical School, Boston, MA, 02144, USA. [email protected].

PMID: 34417886 PMCID: PMC8541961 DOI: 10.1007/s00429-021-02363-z

Abstract

The visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306-2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.

© 2021. The Author(s).

Keywords: MRI; Myelination; Non-human primate; Visual cortex

References

  1. J Neurosci. 1987 Nov;7(11):3416-68 - PubMed
  2. J Neurosci. 2002 Dec 1;22(23):10416-26 - PubMed
  3. J Physiol. 1978 Apr;277:193-226 - PubMed
  4. Cereb Cortex. 2002 Jun;12(6):647-62 - PubMed
  5. J Am Med Inform Assoc. 2001 Sep-Oct;8(5):443-59 - PubMed
  6. J Neurosci. 1984 Jul;4(7):1690-704 - PubMed
  7. Brain Res Bull. 2001 Sep 15;56(2):93-100 - PubMed
  8. Nature. 1978 Aug 3;274(5670):423-8 - PubMed
  9. J Neurosci. 2014 Jul 30;34(31):10156-67 - PubMed
  10. J Comp Neurol. 2000 Jul 10;422(4):621-51 - PubMed
  11. Vis Neurosci. 2015 Jan;32:E016 - PubMed
  12. Neuroimage. 2014 Jun;93 Pt 2:165-75 - PubMed
  13. J Neurosci. 1984 Jan;4(1):309-56 - PubMed
  14. J Neurosci. 1987 Nov;7(11):3378-415 - PubMed
  15. Trends Neurosci. 2003 Jan;26(1):23-6 - PubMed
  16. J Neurosci Methods. 2009 Dec 15;185(1):15-22 - PubMed
  17. Vis Neurosci. 2015 Jan;32:E012 - PubMed
  18. Vision Res. 1986;26(1):63-80 - PubMed
  19. Cereb Cortex. 2019 Feb 1;29(2):544-560 - PubMed
  20. Cereb Cortex. 1991 Jan-Feb;1(1):1-47 - PubMed
  21. Neuron. 2001 Nov 20;32(4):565-77 - PubMed
  22. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2306-2311 - PubMed
  23. Neuroimage. 2014 Jun;93 Pt 2:176-88 - PubMed
  24. Elife. 2017 Jul 03;6: - PubMed
  25. J Neurosci. 2009 May 27;29(21):7031-9 - PubMed
  26. Vis Neurosci. 2015 Jan;32:E021 - PubMed
  27. Brain Struct Funct. 2020 Nov;225(8):2447-2461 - PubMed
  28. J Neurosci. 2011 Aug 10;31(32):11597-616 - PubMed
  29. J Neurosci. 2016 Feb 10;36(6):1841-57 - PubMed
  30. J Comp Neurol. 1996 Jul 15;371(1):129-52 - PubMed
  31. J Neurosci. 2019 Jul 3;39(27):5311-5325 - PubMed
  32. Sci Rep. 2017 Apr 7;7(1):733 - PubMed
  33. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  34. J Neurophysiol. 2001 Nov;86(5):2195-203 - PubMed
  35. Hum Brain Mapp. 2005 Mar;24(3):206-15 - PubMed
  36. Neuroimage. 2012 Sep;62(3):1529-36 - PubMed
  37. J Neurosci. 2003 Aug 13;23(19):7395-406 - PubMed
  38. PLoS Biol. 2019 Jul 3;17(7):e3000362 - PubMed
  39. Science. 2002 Oct 11;298(5592):413-5 - PubMed
  40. Cereb Cortex. 1997 Mar;7(2):166-77 - PubMed
  41. J Comp Neurol. 1997 Mar 3;379(1):21-47 - PubMed
  42. Brain Res. 1969 Jul;14(2):271-91 - PubMed
  43. J Neurosci. 1988 Jun;8(6):1831-45 - PubMed
  44. J Comp Neurol. 2000 Dec 4;428(1):79-111 - PubMed
  45. Sci Adv. 2020 Oct 28;6(44): - PubMed
  46. Vis Neurosci. 2015 Jan;32:E025 - PubMed
  47. Neuroimage. 2019 Aug 15;197:677-688 - PubMed
  48. Vis Neurosci. 2015 Jan;32:E010 - PubMed
  49. Neuron. 2002 Jan 31;33(3):453-61 - PubMed
  50. Science. 1988 May 6;240(4853):740-9 - PubMed
  51. Vis Neurosci. 2015 Jan;32:E013 - PubMed
  52. J Comp Neurol. 1989 Sep 1;287(1):98-118 - PubMed
  53. J Neurophysiol. 1987 Apr;57(4):889-920 - PubMed
  54. J Neurosci. 1986 Aug;6(8):2327-51 - PubMed
  55. Cereb Cortex. 2005 Jun;15(6):809-22 - PubMed
  56. Brain Res. 1971 Aug 7;31(1):85-105 - PubMed
  57. Vis Neurosci. 2015;32:E019 - PubMed
  58. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5183-E5192 - PubMed
  59. Science. 1983 May 13;220(4598):737-9 - PubMed
  60. J Neurosci. 2014 Jul 30;34(31):10168-91 - PubMed
  61. Sci Adv. 2019 Apr 24;5(4):eaau7046 - PubMed
  62. Vis Neurosci. 2003 Nov-Dec;20(6):663-86 - PubMed
  63. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):665-91 - PubMed
  64. Cereb Cortex. 2016 Oct;26(10):3928-3944 - PubMed
  65. Neuroimage. 1999 Feb;9(2):195-207 - PubMed

Publication Types

Grant support