Display options
Share it on

Materials (Basel). 2021 Aug 18;14(16). doi: 10.3390/ma14164649.

High-Velocity Impacts of Pyrophoric Alloy Fragments on Thin Armour Steel Plates.

Materials (Basel, Switzerland)

Evaristo Santamaria Ferraro, Marina Seidl, Tom De Vuyst, Norbert Faderl

Affiliations

  1. French-German Research Institute of Saint Louis (ISL), 68300 Saint Louis, France.
  2. School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL109EU, UK.

PMID: 34443170 PMCID: PMC8402122 DOI: 10.3390/ma14164649

Abstract

The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from 800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value at α of 20°. The influence of the failure modes of MRE and steel fragments on the critical impact velocities (

Keywords: high-velocity impact; impact-induced energy release; pyrophoric alloys; reactive materials

Publication Types