Display options
Share it on

J Am Chem Soc. 2021 Sep 15;143(36):14827-14834. doi: 10.1021/jacs.1c06944. Epub 2021 Sep 02.

Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy.

Journal of the American Chemical Society

Carla Kirschbaum, Kim Greis, Lukasz Polewski, Sandy Gewinner, Wieland Schöllkopf, Gerard Meijer, Gert von Helden, Kevin Pagel

Affiliations

  1. Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.
  2. Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.

PMID: 34473927 PMCID: PMC8447261 DOI: 10.1021/jacs.1c06944

Abstract

Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics.

References

  1. J Chem Theory Comput. 2019 Mar 12;15(3):1652-1671 - PubMed
  2. Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13638-13642 - PubMed
  3. J Am Chem Soc. 2005 Dec 14;127(49):17154-5 - PubMed
  4. Analyst. 2014 Jan 7;139(1):204-14 - PubMed
  5. J Am Soc Mass Spectrom. 1998 May;9(5):516-26 - PubMed
  6. Cell Mol Life Sci. 2015 Oct;72(20):3931-52 - PubMed
  7. Mass Spectrom Rev. 2011 Jul-Aug;30(4):579-99 - PubMed
  8. Chem Phys Lipids. 1990 Feb;52(3-4):163-70 - PubMed
  9. Analyst. 2016 Feb 7;141(3):884-91 - PubMed
  10. Anal Chem. 2012 Sep 4;84(17):7525-32 - PubMed
  11. Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11248-11251 - PubMed
  12. J Am Chem Soc. 2017 Nov 8;139(44):15681-15690 - PubMed
  13. Mass Spectrom Rev. 2011 Jul-Aug;30(4):664-80 - PubMed
  14. J Am Chem Soc. 2007 May 9;129(18):5887-97 - PubMed
  15. Anal Chem. 2018 Oct 2;90(19):11486-11494 - PubMed
  16. Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3295-9 - PubMed
  17. J Am Soc Mass Spectrom. 2011 Sep;22(9):1552-67 - PubMed
  18. Nat Commun. 2020 Jan 17;11(1):375 - PubMed
  19. Anal Chem. 2021 Apr 6;93(13):5468-5475 - PubMed
  20. Rapid Commun Mass Spectrom. 2001;15(10):799-804 - PubMed
  21. J Lipid Res. 2005 May;46(5):839-61 - PubMed
  22. J Chem Phys. 2010 Apr 21;132(15):154104 - PubMed
  23. Mass Spectrom Rev. 2009 May-Jun;28(3):468-94 - PubMed
  24. J Am Soc Mass Spectrom. 2003 Apr;14(4):352-63 - PubMed
  25. J Am Chem Soc. 2015 Apr 1;137(12):4236-42 - PubMed
  26. J Am Soc Mass Spectrom. 2011 Jul;22(7):1146-55 - PubMed
  27. Phys Chem Chem Phys. 2020 Apr 14;22(14):7169-7192 - PubMed
  28. Angew Chem Int Ed Engl. 2018 Jun 18;57(25):7440-7443 - PubMed
  29. Nat Commun. 2021 Feb 22;12(1):1201 - PubMed
  30. Drug Dev Ind Pharm. 2007 Nov;33(11):1169-75 - PubMed
  31. Anal Chem. 2016 Mar 1;88(5):2685-92 - PubMed
  32. Prog Lipid Res. 2011 Jul;50(3):240-57 - PubMed

Publication Types