Display options
Share it on

Dose Response. 2021 Aug 17;19(3):15593258211033111. doi: 10.1177/15593258211033111. eCollection 2021.

The Competitive Absorption by the Gut Microbiome Suggests the First-Order Absorption Kinetics of Caffeine.

Dose-response : a publication of International Hormesis Society

Imran Mukhtar, Arslan Iftikhar, Muhammad Imran, Muhammad Umar Ijaz, Shahzad Irfan, Haseeb Anwar

Affiliations

  1. Department of Physiology, Government College University, Faisalabad, Pakistan.
  2. Sir Sadiq Muhammad Khan Abbasi Post Graduate Medical College, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
  3. Department of Food Science, Government College University, Faisalabad, Pakistan.
  4. Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.

PMID: 34421438 PMCID: PMC8375357 DOI: 10.1177/15593258211033111

Abstract

In the literature archive, the intestinal microbiome is now considered as a discrete organ system. Despite living symbiotically with the human body, the gut microbiome is represented as potential drug targets because of its ability to modify the pharmacokinetics of orally administered drugs. Structural biology analysis indicates the existence of homology between transport proteins of microbial cells and membranes of enterocytes. It is speculated that structural similarity in the protein transporters may provoke an unwanted phenomenon of drug uptake by the gut microbiome present in the small intestine of the host. Considering this hypothesis, we analyzed the absorbance of orally administered caffeine by the gut microbiota in

© The Author(s) 2021.

Keywords: caffeine; microbial lysate; microbiome; pharmacokinetics

Conflict of interest statement

Declaration of conflicting interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. J Pharm Sci. 2011 Feb;100(2):767-74 - PubMed
  2. PLoS One. 2014 May 21;9(5):e97500 - PubMed
  3. Curr Opin Biotechnol. 2015 Apr;32:14-20 - PubMed
  4. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1667-72 - PubMed
  5. Biol Pharm Bull. 2002 Jul;25(7):885-90 - PubMed
  6. Nature. 2010 Mar 4;464(7285):59-65 - PubMed
  7. Dose Response. 2021 Feb 11;19(1):1559325820987943 - PubMed
  8. Clin Pharmacokinet. 1989 Jan;16(1):1-26 - PubMed
  9. Pak J Pharm Sci. 2019 Mar;32(2 (Supplementary)):751-757 - PubMed
  10. Farmaco. 2002 Sep;57(9):709-13 - PubMed
  11. Biochim Biophys Acta. 2007 Jun;1768(6):1342-66 - PubMed
  12. Curr Issues Mol Biol. 2014;16:55-68 - PubMed
  13. Neuro Endocrinol Lett. 2009;30 Suppl 1:101-5 - PubMed
  14. Res Microbiol. 2017 Jun;168(5):443-449 - PubMed
  15. FEBS J. 2008 Jul;275(13):3290-8 - PubMed
  16. J Biol Chem. 1996 Mar 8;271(10):5430-7 - PubMed
  17. Antimicrob Agents Chemother. 1990 Sep;34(9):1715-9 - PubMed
  18. Gut. 1986 Aug;27(8):886-92 - PubMed
  19. J Antimicrob Chemother. 1993 Aug;32(2):195-213 - PubMed
  20. J Antimicrob Chemother. 1987 Jan;19(1):7-20 - PubMed
  21. Mol Pharm. 2006 Jan-Feb;3(1):26-32 - PubMed
  22. Cureus. 2021 May 14;13(5):e15032 - PubMed
  23. Eur J Pharm Biopharm. 2004 Sep;58(2):265-78 - PubMed
  24. Xenobiotica. 2008 Jul;38(7-8):1022-42 - PubMed

Publication Types