Display options
Share it on

Kidney360. 2021 May;2(5):857-868. doi: 10.34067/kid.0007502020. Epub 2021 May 27.

Free Deoxycholic Acid Exacerbates Vascular Calcification in CKD through ER Stress-Mediated ATF4 Activation.

Kidney360

Shinobu Miyazaki-Anzai, Masashi Masuda, Yuji Shiozaki, Audrey L Keenan, Michel Chonchol, Claus Kremoser, Makoto Miyazaki

Affiliations

  1. Division of Renal Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
  2. Phenex Pharmaceuticals AG, Heidelberg, Germany.

PMID: 34423309 PMCID: PMC8378801 DOI: 10.34067/kid.0007502020

Abstract

BACKGROUND: Our metabolome approach found that levels of circulating, free deoxycholic acid (DCA) is associated with the severity of vascular calcification in patients with CKD. However, it is not known whether DCA directly causes vascular calcification in CKD.

METHODS: Using various chemicals and animal and cell culture models, we investigated whether the modulation of DCA levels influences vascular calcification in CKD.

RESULTS: CKD increased levels of DCA in mice and humans by decreasing urinary DCA excretion. Treatment of cultured VSMCs with DCA but no other bile acids (BAs) induced vascular calcification and osteogenic differentiation through endoplasmic reticulum (ER) stress-mediated activating transcription factor-4 (ATF4) activation. Treatment of mice with Farnesoid X receptor (FXR)-specific agonists selectively reduced levels of circulating cholic acid-derived BAs, such as DCA, protecting from CKD-dependent medial calcification and atherosclerotic calcification. Reciprocal FXR deficiency and DCA treatment induced vascular calcification by increasing levels of circulating DCA and activating the ER stress response.

CONCLUSIONS: This study demonstrates that DCA plays a causative role in regulating CKD-dependent vascular diseases through ER stress-mediated ATF4 activation.

References

  1. Clin Liver Dis (Hoboken). 2020 Apr 04;15(3):91-94 - PubMed
  2. Science. 2006 Aug 25;313(5790):1137-40 - PubMed
  3. PLoS One. 2014 Sep 19;9(9):e108270 - PubMed
  4. J Lipid Res. 2012 Aug;53(8):1543-52 - PubMed
  5. J Am Coll Cardiol. 2003 Jan 1;41(1):47-55 - PubMed
  6. Annu Rev Nutr. 2019 Aug 21;39:175-200 - PubMed
  7. J Am Soc Nephrol. 2009 Jul;20(7):1453-64 - PubMed
  8. Am J Kidney Dis. 2018 Jan;71(1):27-34 - PubMed
  9. J Clin Invest. 2015 Oct 26;125(12):4544-58 - PubMed
  10. J Lipid Res. 2009 Oct;50(10):1955-66 - PubMed
  11. JCI Insight. 2016 Nov 3;1(18):e88646 - PubMed
  12. Circ Res. 2010 Jun 25;106(12):1807-17 - PubMed
  13. J Am Heart Assoc. 2014 Jun 24;3(3):e000949 - PubMed
  14. J Am Soc Nephrol. 2002 Mar;13(3):745-753 - PubMed
  15. Curr Opin Clin Nutr Metab Care. 2021 Mar 1;24(2):127-133 - PubMed
  16. Mol Cell. 2000 Sep;6(3):507-15 - PubMed
  17. Handb Exp Pharmacol. 2019;256:265-282 - PubMed
  18. Mol Endocrinol. 2008 Jun;22(6):1345-56 - PubMed
  19. Circ Res. 2011 Sep 2;109(6):697-711 - PubMed
  20. J Biol Chem. 2010 Jan 29;285(5):3035-43 - PubMed
  21. Front Immunol. 2018 Aug 13;9:1853 - PubMed
  22. Physiol Genomics. 2001 Aug 28;6(3):137-44 - PubMed
  23. J Lipid Res. 2018 Sep;59(9):1709-1713 - PubMed
  24. J Biol Chem. 2018 Nov 2;293(44):17008-17020 - PubMed
  25. N Engl J Med. 2004 Sep 23;351(13):1296-305 - PubMed
  26. Kidney Int. 2020 Jun;97(6):1164-1180 - PubMed
  27. iScience. 2020 May 22;23(5):101105 - PubMed
  28. Biochim Biophys Acta. 2002 Nov 20;1588(2):139-48 - PubMed
  29. J Biol Chem. 2003 Dec 19;278(51):51085-90 - PubMed
  30. Arch Intern Med. 2004 Mar 22;164(6):659-63 - PubMed
  31. J Pharmacol Exp Ther. 2012 Dec;343(3):556-67 - PubMed
  32. Curr Opin Lipidol. 2018 Jun;29(3):194-202 - PubMed
  33. J Biol Chem. 2004 Mar 5;279(10):8856-61 - PubMed
  34. J Hepatol. 2004 Mar;40(3):539-51 - PubMed
  35. BMC Res Notes. 2018 Jul 16;11(1):483 - PubMed
  36. J Lipid Res. 2013 Sep;54(9):2515-24 - PubMed
  37. J Am Soc Nephrol. 2008 Feb;19(2):213-6 - PubMed
  38. Mol Cell. 2000 Sep;6(3):517-26 - PubMed
  39. Physiol Rev. 2021 Apr 1;101(2):683-731 - PubMed

Publication Types

Grant support