Display options
Share it on

J Tissue Eng Regen Med. 2021 Nov;15(11):964-997. doi: 10.1002/term.3241. Epub 2021 Sep 14.

Regenerative benefits of using growth factors in treatment of periodontal defects: A systematic review and meta-analysis with Trial Sequential Analysis on preclinical studies.

Journal of tissue engineering and regenerative medicine

Zeinab Farimani, Ahmad Reza Shamshiri, Hoori Asl Roosta, Solmaz Akbari, Mahboubeh Bohlouli

Affiliations

  1. Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran.
  2. Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
  3. Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
  4. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

PMID: 34480421 DOI: 10.1002/term.3241

Abstract

The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010-December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm

© 2021 John Wiley & Sons Ltd.

Keywords: animal model; growth factor; intrabony defects; periodontal regeneration

References

  1. Anzai, J., Kitamura, M., Nozaki, T., Nagayasu, T., Terashima, A., Asano, T., & Murakami, S. (2010). Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (β-TCP) on the Beagle dog 1-wall periodontal defect model. Biochemical and Biophysical Research Communications, 403(3-4), 345-350. - PubMed
  2. Anzai, J., Nagayasu-Tanaka, T., Terashima, A., Asano, T., Yamada, S., Nozaki, T., Kitamura, M., & Murakami, S. (2016). Long-term observation of regenerated periodontium induced by FGF-2 in the Beagle dog 2-wall periodontal defect model. PLoS One, 11(7), e0158485. - PubMed
  3. Basan, T., Welly, D., Kriebel, K., Scholz, M., Brosemann, A., Liese, J., Vollmar, B., Frerich, B., & Lang, H. (2017). Enhanced periodontal regeneration using collagen, stem cells or growth factors. Frontiers in Bioscience, 9(1), 180-193. - PubMed
  4. Bizenjima, T., Seshima, F., Ishizuka, Y., Takeuchi, T., Kinumatsu, T., & Saito, A. (2015). Fibroblast growth factor-2 promotes healing of surgically created periodontal defects in rats with early, streptozotocin-induced diabetes via increasing cell proliferation and regulating angiogenesis. Journal of Clinical Periodontology, 42(1), 62-71. - PubMed
  5. Bowers, G. M., Chadroff, B., Carnevale, R., Mellonig, J., Corio, R., Emerson, J., Stevens, M., & Romberg, E. (1989). Histologic evaluation of new attachment apparatus formation in humans. Part I. Journal of Periodontology, 60(12), 664-674. - PubMed
  6. Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57-80. - PubMed
  7. Cha, J. K., Sun, Y.-K., Lee, J.-S., Choi, S.-H., & Jung, U.-W. (2017). Root coverage using porcine collagen matrix with fibroblast growth factor-2: A pilot study in dogs. Journal of Clinical Periodontology, 44(1), 96-103. - PubMed
  8. Chang, P. C., Dovban, A. S., Lim, L. P., Chong, L. Y., Kuo, M. Y., & Wang, C.-H. (2013). Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials, 34(38), 9990-9997. - PubMed
  9. Chien, K. H., Chang, Y.-L., Wang, M.-L., Chuang, J.-H., Yang, Y.-C., Tai, M.-C., Wang, C.-Y., Liu, Y.-Y., Li, H.-Y., Chen, J.-T., Kao, S.-Y., Chen, H.-L., & Lo, W.-L. (2018). Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Scientific Reports, 8(1), 114. - PubMed
  10. Chisini, L. A., Conde, M. C. M., Grazioli, G., Martin, A. S. S., Carvalho, R. V. D., Sartori, L. R. M., & Demarco, F. F. (2019). Bone, periodontal and dental pulp regeneration in dentistry: A systematic scoping review. Brazilian Dental Journal, 30(2), 77-95. - PubMed
  11. Chiu, H. C., Chiang, C. Y., Tu, H. P., Wikesjö, U. M., Susin, C., & Fu, E. (2013). Effects of bone morphogenetic protein-6 on periodontal wound healing/regeneration in supraalveolar periodontal defects in dogs. Journal of Clinical Periodontology, 40(6), 624-630. - PubMed
  12. Cortellini, P., Pini Prato, G., & Tonetti, M. S. (1993). Periodontal regeneration of human infrabony defects. II. Re-entry procedures and bone measures. Journal of Periodontology, 64(4), 261-268. - PubMed
  13. Dabra, S., Chhina, K., Soni, N., & Bhatnagar, R. (2012). Tissue engineering in periodontal regeneration: A brief review. Dental Research Journal, 9(6), 671-680. - PubMed
  14. Darby, I. B., & Morris, K. H. (2013). A systematic review of the use of growth factors in human periodontal regeneration. Journal of Periodontology, 84(4), 465-476. - PubMed
  15. Donos, N., Park, J.-C., Vajgel, A., de Carvalho Farias, B., & Dereka, X. (2018). Description of the periodontal pocket in preclinical models: Limitations and considerations. Periodontology 2000, 76(1), 16-34. - PubMed
  16. Emerton, K. B., Drapeau, S. J., Prasad, H., Rohrer, M., Roffe, P., Hopper, K., Schoolfield, J., Jones, A., & Cochran, D. L. (2011). Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. Journal of Dental Research, 90(12), 1416-1421. - PubMed
  17. Fawzy El-Sayed, K. M., Mekhemar, M. K., Beck-Broichsitter, B. E., Bähr, T., Hegab, M., Receveur, J., Heneweer, C., Becker, S. T., Wiltfang, J., & Dörfer, C. E. (2015). Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. Journal of Clinical Periodontology, 42(5), 448-457. - PubMed
  18. Furfaro, F., Ang, E. S. M., Lareu, R. R., Murray, K., & Goonewardene, M. (2014). A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model-A pilot study. Progress in Orthodontics, 15(1), 2. - PubMed
  19. Gauthier, P., Yu, Z., Tran, Q. T., Bhatti, F. U., Zhu, X., & Huang, G. T. (2017). Cementogenic genes in human periodontal ligament stem cells are downregulated in response to osteogenic stimulation while upregulated by vitamin C treatment. Cell and Tissue Research, 368(1), 79-92. - PubMed
  20. He, X. T., Li, X., Xia, Y., Yin, Y., Wu, R. X., Sun, H. H., & Chen, F.-M. (2019). Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomaterialia, 88, 162-180. - PubMed
  21. Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE's risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. - PubMed
  22. Huang, R. Y., Tai, W. C., Ho, M. H., & Chang, P. C. (2020). Combination of a biomolecule-aided biphasic cryogel scaffold with a barrier membrane adhering PDGF-encapsulated nanofibers to promote periodontal regeneration. Journal of Periodontal Research, 55(4), 529-538. - PubMed
  23. Ishii, Y., Fujita, T., Okubo, N., Ota, M., Yamada, S., & Saito, A. (2013). Effect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog. Acta Odontologica Scandinavica, 71(2), 325-332. - PubMed
  24. Jimbo, R., Singer, J., Tovar, N., Marin, C., Neiva, R., Bonfante, E. A., Janal, M. N., Contamin, H., & Coelho, P. G. (2018). Regeneration of the cementum and periodontal ligament using local BDNF delivery in class II furcation defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(4), 1611-1617. - PubMed
  25. Kammerer, P. W., Scholz, M., Baudisch, M., Liese, J., Wegner, K., Frerich, B., & Lang, H. (2017). Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells International, 2017, 3548435. - PubMed
  26. Kang, W., Liang, Q., Du, L., Shang, L., Wang, T., & Ge, S. (2019). Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells. Journal of Periodontal Research, 54(4), 424-434. - PubMed
  27. Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2015). Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000, 68(1), 66-82. - PubMed
  28. Kato, A., Miyaji, H., Ishizuka, R., Tokunaga, K., Inoue, K., Kosen, Y., Yokoyama, H., Sugaya, T., Tanaka, S., Sakagami, R., & Kawanami, M. (2015). Combination of root surface modification with BMP-2 and collagen hydrogel scaffold implantation for periodontal healing in Beagle dogs. The Open Dentistry Journal, 9, 52-59. - PubMed
  29. Kim, C. S., Choi, S.-H., Chai, J.-K., Cho, K.-S., Moon, I.-S., Wikesjö, U. M. E., & Kim, C.-K. (2004). Periodontal repair in surgically created intrabony defects in dogs: Influence of the number of bone walls on healing response. Journal of Periodontology, 75(2), 229-235. - PubMed
  30. Kim, Y. T., Wikesjö, U. M. E., Jung, U.-W., Lee, J.-S., Kim, T.-G., & Kim, C.-K. (2013). Comparison between a β-tricalcium phosphate and an absorbable collagen sponge carrier technology for rhGDF-5-stimulated periodontal wound healing/regeneration. Journal of Periodontology, 84(6), 812-820. - PubMed
  31. Kinane, D. F. (2001). Causation and pathogenesis of periodontal disease. Periodontology 2000, 25, 8-20. - PubMed
  32. Kuniyasu, H., Hirose, Y., Ochi, M., Yajima, A., Sakaguchi, K., Murata, M., & Pohl, J. (2003). Bone augmentation using rhGDF-5-collagen composite. Clinical Oral Implants Research, 14(4), 490-499. - PubMed
  33. Kuroda, Y., Kawai, T., Goto, K., & Matsuda, S. (2019). Clinical application of injectable growth factor for bone regeneration: A systematic review. Inflammation and Regeneration, 39, 20. - PubMed
  34. Kwon, D. H., Bennett, W., Herberg, S., Bastone, P., Pippig, S., Rodriguez, N. A., Susin, C., & Wikesjö, U. M. E. (2010a). Evaluation of an injectable rhGDF-5/PLGA construct for minimally invasive periodontal regenerative procedures: A histological study in the dog. Journal of Clinical Periodontology, 37(4), 390-397. - PubMed
  35. Kwon, D. H., Bisch, F. C., Herold, R. W., Pompe, C., Bastone, P., Rodriguez, N. A., Susin, C., & Wikesjö, U. M. (2010b). Periodontal wound healing/regeneration following the application of rhGDF-5 in a beta-TCP/PLGA carrier in critical-size supra-alveolar periodontal defects in dogs. Journal of Clinical Periodontology, 37(7), 667-674. - PubMed
  36. Kwon, H. R., Wikesjö, U. M., Park, J. C., Kim, Y. T., Bastone, P., Pippig, S. D., & Kim, C. K. (2010c). Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs. Journal of Clinical Periodontology, 37(8), 739-746. - PubMed
  37. Lanza, R. (2020). Principles of tissue engineering. Elsevier. - PubMed
  38. Laugisch, O., Cosgarea, R., Nikou, G., Nikolidakis, D., Donos, N., Salvi, G. E., Stavropoulos, A., Jepsen, S., & Sculean, A. (2019). Histologic evidence of periodontal regeneration in furcation defects: A systematic review. Clinical Oral Investigations, 23(7), 2861-2906. - PubMed
  39. Lee, A. R., Choi, H., Kim, J.-H., Cho, S.-W., & Park, Y.-B. (2017). Effect of serial use of bone morphogenetic protein 2 and fibroblast growth factor 2 on periodontal tissue regeneration. Implant Dentistry, 26(5), 664-673. - PubMed
  40. Lee, J., & Wikesjö, U. M. E. (2014). Growth/differentiation factor-5: Pre-clinical and clinical evaluations of periodontal regeneration and alveolar augmentation-Review. Journal of Clinical Periodontology, 41(8), 797-805. - PubMed
  41. Lee, J. S., Wikesjö, U. M. E., Jung, U.-W., Choi, S.-H., Pippig, S., Siedler, M., & Kim, C.-K. (2010). Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intrabony defects in dogs. Journal of Clinical Periodontology, 37(4), 382-389. - PubMed
  42. Lee, J. S., Wikesjö, U. M. E., Park, J.-C., Jang, Y.-J., Pippig, S. D., Bastone, P., Choi, S.-H., & Kim, C.-K. (2012). Maturation of periodontal tissues following implantation of rhGDF-5/β-TCP in one-wall intra-bony defects in dogs: 24-week histological observations. Journal of Clinical Periodontology, 39(5), 466-474. - PubMed
  43. Li, C., Bi, W., Zhang, D., Sang, Z., Li, L., & Yu, Y. (2017a). Transforming growth factor-beta1 promotes Geistlich Bio-Oss® osteogenesis via inhibiting local inflammation response in vivo. International Journal of Clinical and Experimental Pathology, 10(9), 9310-9317. - PubMed
  44. Li, F., Yu, F., Xu, X., Li, C., Huang, D., Zhou, X., Ye, L., & Zheng, L. (2017b). Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration: A systematic review and meta-analysis. Scientific Reports, 7(1), 65. - PubMed
  45. Li, Y., Qiao, Z., Yu, F., Hu, H., Huang, Y., Xiang, Q., Zhang, Q., Yang, Y., Zhao, Y. (2019). Transforming growth factor-beta3/chitosan sponge (TGF-beta3/CS) facilitates osteogenic differentiation of human periodontal ligament stem cells. International Journal of Molecular Sciences, 20(20), 4982. - PubMed
  46. Matsuse, K., Hashimoto, Y., Kakinoki, S., Yamaoka, T., & Morita, S. (2018). Periodontal regeneration induced by porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor in a canine model of 2-wall periodontal defects. Medical Molecular Morphology, 51(1), 48-56. - PubMed
  47. Min, C. K., Wikesjö, U. M. E., Park, J.-C., Chae, G.-J., Pippig, S. D., Bastone, P., Kim, C.-S., & Kim, C.-K. (2011). Wound healing/regeneration using recombinant human growth/differentiation factor-5 in an injectable poly-lactide-co-glycolide-acid composite carrier and a one-wall intra-bony defect model in dogs. Journal of Clinical Periodontology, 38(3), 261-268. - PubMed
  48. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535-b2535. - PubMed
  49. Momose, T., Miyaji, H., Kato, A., Ogawa, K., Yoshida, T., Nishida, E., Murakami, S., Kosen, Y., Sugaya, T., & Kawanami, M. (2016). Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II furcation defects in dog. The Open Dentistry Journal, 10, 347-359. - PubMed
  50. Moreno Sancho, F., Leira, Y., Orlandi, M., Buti, J., Giannobile, W. V., & D'Aiuto, F. (2019). Cell-based therapies for alveolar bone and periodontal regeneration: Concise review. Stem Cells Translational Medicine, 8(12), 1286-1295. - PubMed
  51. Nagayasu-Tanaka, T., Anzai, J., Takaki, S., Shiraishi, N., Terashima, A., Asano, T., Nozaki, T., Kitamura, M., & Murakami, S. (2015). Action mechanism of fibroblast growth factor-2 (FGF-2) in the promotion of periodontal regeneration in Beagle dogs. PLoS One, 10(6). - PubMed
  52. Nakamura, T., Yamamoto, M., Tamura, M., & Izumi, Y. (2003). Effects of growth/differentiation factor-5 on human periodontal ligament cells. Journal of Periodontal Research, 38(6), 597-605. - PubMed
  53. Nevins, M., Nevins, M. L., Karimbux, N., Kim, S.-W., Schupbach, P., & Kim, D. M. (2012). The combination of purified recombinant human platelet-derived growth factor-BB and equine particulate bone graft for periodontal regeneration. Journal of Periodontology, 83(5), 565-573. - PubMed
  54. Noda, K., Seshima, F., Okubo, N., Ishii, Y., Ota, M., Yamada, S., & Saito, A. (2012). Effect of platelet-derived growth factor-BB on root resorption after reimplantation of partially denuded tooth in dog. Dental Traumatology, 28(3), 217-225. - PubMed
  55. Ogawa, K., Miyaji, H., Kato, A., Kosen, Y., Momose, T., Yoshida, T., Nishida, E., Miyata, S., Murakami, S., Takita, H., Fugetsu, B., Sugaya, T., & Kawanami, M. (2016). Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. Journal of Periodontal Research, 51(6), 758-767. - PubMed
  56. Oortgiesen, D. A., Walboomers, X. F., Bronckers, A. L., Meijer, G. J., & Jansen, J. A. (2014). Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. Journal of Tissue Engineering and Regenerative Medicine, 8(3), 202-209. - PubMed
  57. Palioto, D. B., de O Macedo, G., Queiroz, A. C., Taba, M., Jr, Souza, S. L., Grisi, M. F., & Novaes, A. B., Jr (2012). Enamel matrix derivative and transforming growth factor-beta1 in class III furcation defects. A histomorphometric study in dogs. Journal of the International Academy of Periodontology, 14(3), 69-75. - PubMed
  58. Pan, J., Deng, J., Luo, Y., Yu, L., Zhang, W., Han, X., You, Z., & Liu, Y. (2019). Thermosensitive hydrogel delivery of human periodontal stem cells overexpressing platelet-derived growth factor-BB enhances alveolar bone defect repair. Stem Cells and Development, 28(24), 1620-1631. - PubMed
  59. Park, J. C., Wikesjö, U. M. E., Koo, K.-T., Lee, J.-S., Kim, Y.-T., Pippig, S. D., Bastone, P., Kim, C.-S., & Kim, C.-K. (2012). Maturation of alveolar bone following implantation of an rhGDF-5/PLGA composite into 1-wall intra-bony defects in dogs: 24-week histometric observations. Journal of Clinical Periodontology, 39(6), 565-573. - PubMed
  60. Pilipchuk, S. P., Fretwurst, T., Yu, N., Larsson, L., Kavanagh, N. M., Asa'ad, F., Cheng, K. C. K., Lahann, J., & Giannobile, W. V. (2018). Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues. Advanced Healthcare Materials, 7(22), e1800750. - PubMed
  61. Pilipchuk, S. P., Plonka, A. B., Monje, A., Taut, A. D., Lanis, A., Kang, B., & Giannobile, W. V. (2015). Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials, 31(4), 317-338. - PubMed
  62. Plonka, A. B., Khorsand, B., Yu, N., Sugai, J. V., Salem, A. K., Giannobile, W. V., & Elangovan, S. (2017). Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 24(1), 31-39. - PubMed
  63. Polimeni, G., Albandar, J. M., & Wikesjo, U. M. (2005). Prognostic factors for alveolar regeneration: Effect of space provision. Journal of Clinical Periodontology, 32(9), 951-954. - PubMed
  64. Polimeni, G., Xiropaidis, A. V., & Wikesjo, U. M. (2006). Biology and principles of periodontal wound healing/regeneration. Periodontology 2000, 41, 30-47. - PubMed
  65. Qiu, Z. Y., Chen, C., Wang, X.-M., & Lee, I.-S. (2014). Advances in the surface modification techniques of bone-related implants for last 10 years. Regenerative Biomaterials, 1(1), 67-79. - PubMed
  66. Rao, S. M., Ugale, G. M., & Warad, S. B. (2013). Bone morphogenetic proteins: Periodontal regeneration. North American Journal of Medical Sciences, 5(3), 161-168. - PubMed
  67. Ripamonti, U., Parak, R., Klar, R. M., Dickens, C., Dix-Peek, T., & Duarte, R. (2017). Cementogenesis and osteogenesis in periodontal tissue regeneration by recombinant human transforming growth factor-beta3: A pilot study in Papio ursinus. Journal of Clinical Periodontology, 44(1), 83-95. - PubMed
  68. Saito, A., Saito, E., Kuboki, Y., Kimura, M., Nakajima, T., Yuge, F., Kato, T., Honma, Y., Takahashi, T., & Ohata, N. (2013). Periodontal regeneration following application of basic fibroblast growth factor-2 in combination with beta tricalcium phosphate in class III furcation defects in dogs. Dental Materials Journal, 32(2), 256-262. - PubMed
  69. Sakaguchi, K., Katagiri, W., Osugi, M., Kawai, T., Sugimura-Wakayama, Y., & Hibi, H. (2017). Periodontal tissue regeneration using the cytokine cocktail mimicking secretomes in the conditioned media from human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 484(1), 100-106. - PubMed
  70. Sallum, E. A., Ribeiro, F. V., Ruiz, K. S., & Sallum, A. W. (2019). Experimental and clinical studies on regenerative periodontal therapy. Periodontology 2000, 79(1), 22-55. - PubMed
  71. Sano, K., Usui, M., Moritani, Y., Nakazawa, K., Hanatani, T., Kondo, H., Nakatomi, M., Onizuka, S., Iwata, T., Sato, T., Togari, A., Ariyoshi, W., Nishihara, T., & Nakashima, K. (2020). Co-cultured spheroids of human periodontal ligament mesenchymal stem cells and vascular endothelial cells enhance periodontal tissue regeneration. Regenerative Therapy, 14, 59-71. - PubMed
  72. Song, D. S., Park, J. C., Jung, I. H., Choi, S. H., Cho, K. S., Kim, C. K., & Kim, C.-S. (2011). Enhanced adipogenic differentiation and reduced collagen synthesis induced by human periodontal ligament stem cells might underlie the negative effect of recombinant human bone morphogenetic protein-2 on periodontal regeneration. Journal of Periodontal Research, 46(2), 193-203. - PubMed
  73. Sanz, M., Jepsen, K., Eickholz, P., & Jepsen, S. (2015). Clinical concepts for regenerative therapy in furcations. Periodontology 2000, 68(1), 308-332. - PubMed
  74. Schmid, G. J., Kobayashi, C., Sandell, L. J., & Ornitz, D. M. (2009). Fibroblast growth factor expression during skeletal fracture healing in mice. Developmental Dynamics, 238(3), 766-774. - PubMed
  75. Shirakata, Y., Sculean, A., Shinohara, Y., Sena, K., Takeuchi, N., Bosshardt, D. D., & Noguchi, K. (2016). Healing of localized gingival recessions treated with a coronally advanced flap alone or combined with an enamel matrix derivative and a porcine acellular dermal matrix: A preclinical study. Clinical Oral Investigations, 20(7), 1791-1800. - PubMed
  76. Shirakata, Y., Takeuchi, N., Yoshimoto, T., Taniyama, K., & Noguchi, K. (2013). Effects of enamel matrix derivative and basic fibroblast growth factor with β-tricalcium phosphate on periodontal regeneration in one-wall intrabony defects: An experimental study in dogs. The International Journal of Periodontics and Restorative Dentistry, 33(5), 641-649. - PubMed
  77. Shirakata, Y., Taniyama, K., Yoshimoto, T., Miyamoto, M., Takeuchi, N., Matsuyama, T., & Noguchi, K. (2010). Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs. Journal of Clinical Periodontology, 37(4), 374-381. - PubMed
  78. Shujaa Addin, A., Akizuki, T., Hoshi, S., Matsuura, T., Ikawa, T., Fukuba, S., Matsui, M., Tabata, Y., & Izumi, Y. (2017). Biodegradable gelatin/beta-tricalcium phosphate sponges incorporating recombinant human fibroblast growth factor-2 for treatment of recession-type defects: A split-mouth study in dogs. Journal of Periodontal Research, 52(5), 863-871. - PubMed
  79. Sowmya, S., Mony, U., Jayachandran, P., Reshma, S., Kumar, R. A., Arzate, H., Nair, S. V., & Jayakumar, R. (2017). Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Advanced Healthcare Materials, 6(7). - PubMed
  80. Stavropoulos, A., Windisch, P., Gera, I., Capsius, B., Sculean, A., & Wikesjö, U. M. E. (2011). A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration. Journal of Clinical Periodontology, 38(11), 1044-1054. - PubMed
  81. Susin, C., Fiorini, T., Lee, J., De Stefano, J. A., Dickinson, D. P., & Wikesjö, U. M. E. (2015). Wound healing following surgical and regenerative periodontal therapy. Periodontology 2000, 68(1), 83-98. - PubMed
  82. Tabas, I. (2010). The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation Research, 107(7), 839-850. - PubMed
  83. Takayama, I., Tanabe, H., Nishiyama, T., Ito, H., Amizuka, N., Li, M., Katsube, K.-i., Kii, I., & Kudo, A. (2017). Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. Journal of Cell Communication and Signaling, 11(1), 5-13. - PubMed
  84. Takeshima, N., Sozu, T., Tajika, A., Ogawa, Y., Hayasaka, Y., & Furukawa, T. A. (2014). Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Medical Research Methodology, 14, 30. - PubMed
  85. Tavelli, L., Ravidà, A., Barootchi, S., Chambrone, L., & Giannobile, W. V. (2021). Recombinant human platelet-derived growth factor: A systematic review of clinical findings in oral regenerative procedures. JDR Clinical and Translational Research, 6(2), 161-173. - PubMed
  86. Tayalia, P., & Mooney, D. J. (2009). Controlled growth factor delivery for tissue engineering. Advanced Materials, 21(32-33), 3269-3285. - PubMed
  87. Teare, J. A., Petit, J. C., & Ripamonti, U. (2012). Synergistic induction of periodontal tissue regeneration by binary application of human osteogenic protein-1 and human transforming growth factor-β 3 in class II furcation defects of Papio ursinus. Journal of Periodontal Research, 47(3), 336-344. - PubMed
  88. Tian, L. (2007). Inferences on standardized mean difference: The generalized variable approach. Statistics in Medicine, 26(5), 945-953. - PubMed
  89. Tsuboi, R., Sasaki, J. I., Kitagawa, H., Yoshimoto, I., Takeshige, F., & Imazato, S. (2018). Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration. Dental Materials, 34(4), 641-648. - PubMed
  90. Vaquette, C., Pilipchuk, S. P., Bartold, P. M., Hutmacher, D. W., Giannobile, W. V., & Ivanovski, S. (2018). Tissue engineered constructs for periodontal regeneration: Current status and future perspectives. Advanced Healthcare Materials, 7(21), e1800457. - PubMed
  91. Wang, B., Mastrogiacomo, S., Yang, F., Shao, J., Ong, M. M. A., Chanchareonsook, N., Jansen, J. A., Walboomers, X. F., & Yu, N. (2019). Application of BMP-bone cement and FGF-gel on periodontal tissue regeneration in nonhuman primates. Tissue Engineering Part C Methods, 25(12), 748-756. - PubMed
  92. Wang, C., Liu, Y., Fan, Y., & Li, X. (2017a). The use of bioactive peptides to modify materials for bone tissue repair. Regenerative Biomaterials, 4(3), 191-206. - PubMed
  93. Wang, P., Wang, Y., Tang, W., Wang, X., Pang, Y., Yang, S., Wei, Y., Gao, H., Wang, D., & Cao, Z. (2017b). Bone morphogenetic protein-9 enhances osteogenic differentiation of human periodontal ligament stem cells via the JNK pathway. PLoS One, 12(1), e0169123. - PubMed
  94. Wei, L., Teng, F., Deng, L., Liu, G., Luan, M., Jiang, J., Liu, Z., & Liu, Y. (2019). Periodontal regeneration using bone morphogenetic protein 2 incorporated biomimetic calcium phosphate in conjunction with barrier membrane: A pre-clinical study in dogs. Journal of Clinical Periodontology, 46(12), 1254-1263. - PubMed
  95. Wikesjo, U. M., Guglielmoni, P., Promsudthi, A., Cho, K.-S., Trombelli, L., Selvig, K. A., Jin, L., & Wozney, J. M. (1999). Periodontal repair in dogs: Effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. Journal of Clinical Periodontology, 26(6), 392-400. - PubMed
  96. Xiao, L., Naganawa, T., Lorenzo, J., Carpenter, T. O., Coffin, J. D., & Hurley, M. M. (2010). Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO. Journal of Biological Chemistry, 285(4), 2834-2846. - PubMed
  97. Xiao, Y., Yin, Q., Wang, L., & Bao, C. (2015). Macro-porous calcium phosphate scaffold with collagen and growth factors for periodontal bone regeneration in dogs. Ceramics International, 41(1), 995-1003. - PubMed
  98. Xu, M., Wei, X., Fang, J., & Xiao, L. (2019). Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Bioscience Reports, 39(12), BSR20190785. - PubMed
  99. Yamashita, M., Lazarov, M., Jones, A. A., Mealey, B. L., Mellonig, J. T., & Cochran, D. L. (2010). Periodontal regeneration using an anabolic peptide with two carriers in baboons. Journal of Periodontology, 81(5), 727-736. - PubMed
  100. Yamano, S., Haku, K., Yamanaka, T., Dai, J., Takayama, T., Shohara, R., Tachi, K., Ishioka, M., Hanatani, S., Karunagaran, S., Wada, K., & Moursi, A. M. (2014). The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials, 35(8), 2446-2453. - PubMed
  101. Yan, X. Z., Ge, S.-H., Sun, Q.-F., Guo, H.-M., & Yang, P.-S. (2010). A pilot study evaluating the effect of recombinant human bone morphogenetic protein-2 and recombinant human beta-nerve growth factor on the healing of class III furcation defects in dogs. Journal of Periodontology, 81(9), 1289-1298. - PubMed
  102. Yang, L., Zhang, Y., Dong, R., Peng, L., Liu, X., Wang, Y., & Cheng, X. (2010). Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. Journal of Periodontal Research, 45(4), 532-540. - PubMed
  103. Yin, X., Li, P., Li, Y., Cai, Y., Wen, J., & Luan, Q. (2017). Growth/differentiation factor-5 promotes in vitro/vivo periodontal specific differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 14(5), 4111-4117. - PubMed
  104. Yu, S. J., Lee, J. S., Jung, U. W., Park, J. C., Kim, B. O., & Choi, S. H. (2015). Effect of fibroblast growth factor on injured periodontal ligament and cementum after tooth replantation in dogs. Journal of Periodontal and Implant Science, 45(3), 111-119. - PubMed
  105. Zhang, Y., Miron, R. J., Li, S., Shi, B., Sculean, A., & Cheng, X. (2015). Novel mesoporous bioglass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. Journal of Clinical Periodontology, 42(3), 262-271. - PubMed

Publication Types