Display options
Share it on

Clin Oral Investig. 2021 Sep 10; doi: 10.1007/s00784-021-04168-0. Epub 2021 Sep 10.

Enamel erosion control by strontium-containing TiO.

Clinical oral investigations

Berthyelle Pádova Nyland, Cristiano Porcel Pereira, Paulo Soares, Denise Stolle da Luz Weiss, Walter Luís Mikos, João Armando Brancher, Sérgio Vieira, Andrea Freire

Affiliations

  1. School of Life Sciences, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil.
  2. Polytechnic School, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil.
  3. Mechanical Engineering Department, Universidade Tecnológica Federal Do Paraná, Curitiba, Brasil.
  4. School of Life Sciences, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil. [email protected].
  5. School of Dentistry- FAODO, Universidade Federal de Mato Grosso Do Sul, Av. Costa e Silva, S/N, Universitário, Campo Grande, MS, 79070-900, Brasil. [email protected].

PMID: 34505917 DOI: 10.1007/s00784-021-04168-0

Abstract

OBJECTIVES: To evaluate the effect of strontium-containing titanium- and/or magnesium-doped phosphate bioactive glass on the control of dental erosion.

MATERIALS AND METHODS: Fifty fragments of human enamel were divided into five groups: negative control, 45S5 bioglass, strontium-containing Ti-doped phosphate bioactive glass (PBG-Ti), strontium-containing Mg-doped phosphate bioactive glass (PBG-Mg), and strontium-containing Ti- and Mg-doped phosphate bioactive glass (PBG-TiMg). The specimens underwent cycles of erosive challenge twice daily for 5 days with 1 mL of citric acid for 2 min followed by 1 mL of the suspension with bioactive substances for 3 min. After the cycles, profilometry, roughness and microhardness testing, and scanning electron microscopy (SEM) were performed. The following statistical tests were used: one-way ANOVA (profile, roughness, and surface microhardness (%VMS) data variation), Tukey's HSD (%VMS), Games-Howell test (profilometry), Student's t test (roughness), and Pearson's correlation between the variables.

RESULTS: The lower loss of enamel surface and lower %VMS was observed in the PBG-Mg and PBG-TiMg groups, and only the PBG-Mg group showed similar roughness between baseline and eroded areas (p > 0.05). On SEM micrographs, PBG-Ti and PBG-Mg groups showed lower apparent demineralization.

CONCLUSION: All bioactive materials protected the enamel against erosion. However, strontium-containing phosphate bioactive glasses showed lower enamel loss, and the presence of Mg in these bioactive glasses provided a greater protective effect.

CLINICAL RELEVANCE: Experimental strontium-containing phosphate bioactive glasses are effective in controlling enamel erosion. The results obtained in this study will guide the development of new dental products.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Bioactive glass; Bioglass 45S5; Enamel erosion; Microhardness; Profilometry; Roughness

References

  1. Schlueter N, Amaechi BT, Bartlett D et al (2020) Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the cariology research group of the IADR. Caries Res 54:2–6. https://doi.org/10.1159/000503308 - PubMed
  2. Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion–an overview with emphasis on chemical and histopathological aspects. Caries Res 45(Suppl 1):2–12. https://doi.org/10.1159/000325915 - PubMed
  3. Richards D (2016) Impact of diet on tooth erosion. Evid Based Dent 7:40. https://doi.org/10.1038/sj.ebd.6401164 - PubMed
  4. Gambon DL, Brand HS, Veerman EC (2012) Dental erosion in the 21st century: what is happening to nutritional habits and lifestyle in our society? Br Dent J 213:55–57. https://doi.org/10.1038/sj.bdj.2012.613 - PubMed
  5. Schlueter N, Luka B (2018) Erosive tooth wear - a review on global prevalence and on its prevalence in risk groups. Br Dent 224:364–370. https://doi.org/10.1038/sj.bdj.2018.167 - PubMed
  6. Brusius CD, Alves LS, Susin C, Maltz M (2018) Dental erosion among South Brazilian adolescents: a 2.5-year longitudinal study. Community Dent Oral Epidemiol 46:17–23. https://doi.org/10.1111/cdoe.12322 - PubMed
  7. Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N, Schmalz G, Shellis RP, Tveit AB, Wiegand A (2015) Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear–diagnosis and management. Clin Oral Investig 19:1557–1561. https://doi.org/10.1007/s00784-015-1511-7 - PubMed
  8. de Oliveira AF, de Oliveira Diniz LV, Forte FD, Sampaio FC, Ccahuana-Vásquez RA, Tochukwu Amaechi B (2017) In situ effect of a CPP-ACP chewing gum on enamel erosion associated or not with abrasion. Clin Oral Investig 21:339–346. https://doi.org/10.1007/s00784016-1796-1 - PubMed
  9. Alexandria AK, Vieira TI, Pithon MM, da Silva Fidalgo TK, Fonseca-Gonçalves A, Valença AM, Cabral LM, Maia LC (2017) In vitro enamel erosion and abrasion-inhibiting effect of different fluoride varnishes. Arch Oral Biol 77:39–43. https://doi.org/10.1016/j.archoralbio.2017.01.010 - PubMed
  10. Joiner A, Schäfer F, Naeeni MM, Gupta AK, Zero DT (2014) Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ. J Dent 42(Suppl 1):S53–S59. https://doi.org/10.1016/S0300-5712(14)50008-5 - PubMed
  11. Ionta FQ, Dos Santos NM, Mesquita IM, Dionísio EJ, Cruvinel T, Honório HM, Rios D (2019) Is the dentifrice containing calcium silicate, sodium phosphate, and fluoride able to protect enamel against chemical mechanical wear? An in situ/ex vivo study. Clin Oral Investig 23:3713–3720. https://doi.org/10.1007/s00784-018-2792-4 - PubMed
  12. Bakry AS, Marghalani HY, Amin OA, Tagami J (2014) The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent 42:1458–1463. https://doi.org/10.1016/j.jdent.2014.05.014 - PubMed
  13. El-Wassefy NA (2017) Remineralizing effect of cold plasma and/or bioglass on demineralized enamel. Dent Mater J 36:157–167. https://doi.org/10.4012/dmj.2016-219 - PubMed
  14. Dionysopoulos D, Tolidis K, Sfeikos T (2019) Effect of air-abrasion pre-treatment with bioactive glass 45S5 on enamel surface loss after erosion/abrasion challenge. Dent Mater 35:e193–e203. https://doi.org/10.1016/j.dental.2019.05.009 - PubMed
  15. Skallevold HE, Rokaya D, Khurshid Z, Zafar MS (2019) Bioactive glass applications in dentistry. Int J Mol Sci 20:5960. https://doi.org/10.3390/ijms20235960 - PubMed
  16. Mneimne M, Hill RG, Bushby AJ, Brauer DS (2011) High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater 7:1827–1834. https://doi.org/10.1016/j.actbio.2010.11.037 - PubMed
  17. Durgalakshmi D, Ajay Rakkesh R, Kesavan M, Ganapathy S, Ajithkumar TG, Karthikeyan S, Balakumar S (2018) Highly reactive crystalline-phase-embedded strontium-bioactive nanorods for multimodal bioactive applications. Biomater Sci 6:1764–1776. https://doi.org/10.1039/C8BM00362A - PubMed
  18. Asif IM, Shelton RM, Cooper PR, Addison O, Martin RA (2014) In vitro bioactivity of titanium-doped bioglass. J Mater Sci Mater Med 25:1865–1873. https://doi.org/10.1007/s10856-014-5230-4 - PubMed
  19. Bellucci D, Sola A, Salvatori R, Anesi A, Chiarini L, Cannillo V (2017) Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Mater Sci Eng C Mater Biol Appl 72:566–575. https://doi.org/10.1016/j.msec.2016.11.110 - PubMed
  20. Weiss DSL, Torres RD, Buchner S, Blunk S, Soares P (2014) Effect of Ti and Mg dopants on the mechanical properties, solubility, and bioactivity in vitro of a Sr-containing phosphate based glass. J Non Cryst Solids 386:34–38. https://doi.org/10.1016/j.jnoncrysol.2013.11.036 - PubMed
  21. Hara AT, González-Cabezas C, Creeth J, Zero DT (2008) The effect of human saliva substitutes in an erosion-abrasion cycling model. Eur J Oral Sci 116:552–556. https://doi.org/10.1111/j.1600-0722.2008.00575.x - PubMed
  22. Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A (2011) Methodology and models in erosion research: discussion and conclusions. Caries Res 45(Suppl 1):69–77. https://doi.org/10.1159/000325971 - PubMed
  23. Haruna T, Kariya S, Fujiwara T, Yuta A, Higaki T, Zhao P, Ogawa Y, Kanai K, Hirata Y, Oka A, Nishizaki K, Okano M (2019) Role of whole saliva in the efficacy of sublingual immunotherapy in seasonal allergic rhinitis. Allergol Int 68:82–89. https://doi.org/10.1016/j.alit.2018.07.008 - PubMed
  24. Carvalho TS, Lussi A (2015) Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth. Caries Res 49:109–115. https://doi.org/10.1159/000369104 - PubMed
  25. Lussi A, Carvalho TS (2015) The future of fluorides and other protective agents in erosion prevention. Caries Res 49:18–29. https://doi.org/10.1159/000380886 - PubMed
  26. Jones JR (2015) Reprint of: Review of bioactive glass: from hench to hybrids. Acta Biomater 23(Suppl):S53-82. https://doi.org/10.1016/j.actbio.2015.07.019 - PubMed
  27. Abdallah MN, Eimar H, Bassett DC, Schnabel M, Ciobanu O, Nelea V, McKee MD, Cerruti M, Tamimi F (2016) Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomater 37:174–183. https://doi.org/10.1016/j.actbio.2016.04.005 - PubMed
  28. La Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, Cairney J (2016) Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci Adv 2:e1601145. https://doi.org/10.1126/sciadv.1601145 - PubMed
  29. Yin S, Ellis DE (2010) First-principles investigations of Ti-substituted hydroxyapatite electronic structure. Phys Chem Chem Phys 12:156–163. https://doi.org/10.1039/b915171k - PubMed
  30. Kokubo T, Yamaguchi S (2019) Simulated body fluid and the novel bioactive materials derived from it. J Biomed Mater Res A 107:968–977. https://doi.org/10.1002/jbm.a.36620 - PubMed
  31. Dawes C, Pedersen AM, Villa A, Ekström J, Proctor GB, Vissink A, Aframian D, McGowan R, Aliko A, Narayana N, Sia YW, Joshi RK, Jensen SB, Kerr AR, Wolff A (2015) The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol 60:863–874. https://doi.org/10.1016/j.archoralbio.2015.03.004 - PubMed
  32. Baumann T, Kozik J, Lussi A, Carvalho TS (2016) Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva. Sci Rep 6:34760. https://doi.org/10.1038/srep34760 - PubMed
  33. Jager DH, Vieira AM, Ligtenberg AJ, Bronkhorst E, Huysmans MC, Vissink A (2011) Effect of salivary factors on the susceptibility of hydroxyapatite to early erosion. Caries Res 45:532–537. https://doi.org/10.1159/000331938 - PubMed
  34. Gittings S, Turnbull N, Henry B, Roberts CJ, Gershkovich P (2015) Characterisation of human saliva as a platform for oral dissolution medium development. Eur J Pharm Biopharm 91:16–24. https://doi.org/10.1016/j.ejpb.2015.01.007 - PubMed
  35. Schlueter N, Hara A, Shellis RP, Ganss C (2011) Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res 45(Suppl 1):13–23. https://doi.org/10.1159/000326819 - PubMed
  36. Lombardini M, Ceci M, Colombo M, Bianchi S, Poggio C (2014) Preventive effect of different toothpastes on enamel erosion: AFM and SEM studies. Scanning 36:401–410. https://doi.org/10.1002/sca.21132 - PubMed
  37. Lippert F (2013) An introduction to toothpaste - its purpose, history and ingredients. Monogr Oral Sci 23:1–14. https://doi.org/10.1159/000350456 - PubMed

Publication Types