Display options
Share it on

Transbound Emerg Dis. 2021 Aug 27; doi: 10.1111/tbed.14304. Epub 2021 Aug 27.

A novel strain of lumpy skin disease virus causes clinical disease in cattle in Hong Kong.

Transboundary and emerging diseases

John Flannery, Barbara Shih, Ismar R Haga, Martin Ashby, Amanda Corla, Simon King, Graham Freimanis, Noemi Polo, Anne Ching-Nga Tse, Christopher J Brackman, Jason Chan, Patrick Pun, Andrew D Ferguson, Andy Law, Samantha Lycett, Carrie Batten, Philippa M Beard

Affiliations

  1. The Pirbright Institute, Woking, Surrey, UK.
  2. The Roslin Institute, University of Edinburgh, Midlothian, UK.
  3. Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China.
  4. CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Hong Kong, China.

PMID: 34448540 DOI: 10.1111/tbed.14304

Abstract

Lumpy skin disease virus (LSDV) is an emerging poxviral pathogen of cattle that is currently spreading throughout Asia. The disease situation is of high importance for farmers and policy makers in Asia. In October 2020, feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD). Gross and histological pathology further supported the diagnosis and samples were sent to the OIE Reference Laboratory at The Pirbright Institute for confirmatory testing. LSDV was detected using quantitative polymerase chain reaction (qPCR) and additional molecular analyses. This is the first report of LSD in Hong Kong. Whole genome sequencing (WGS) of the strain LSDV/Hong Kong/2020 and phylogenetic analysis were carried out in order to identify connections to previous outbreaks of LSD, and better understand the drivers of LSDV emergence. Analysis of the 90 core poxvirus genes revealed LSDV/Hong Kong/2020 was a novel strain most closely related to the live-attenuated Neethling vaccine strains of LSDV and more distantly related to wildtype LSDV isolates from Africa, the Middle East and Europe. Analysis of the more variable regions located towards the termini of the poxvirus genome revealed genes in LSDV/Hong Kong/2020 with different patterns of grouping when compared to previously published wildtype and vaccine strains of LSDV. This work reveals that the LSD outbreak in Hong Kong in 2020 was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015-2018. The use of WGS is highly recommended when investigating LSDV disease outbreaks.

© 2021 The Authors. Transboundary and Emerging Diseases published by Wiley-VCH GmbH.

Keywords: Hong Kong; Lumpy skin disease; cattle; epidemic; lumpy skin disease virus; phylogenetics; poxvirus

References

  1. Acharya, K. P., & Subedi, D. (2020). First outbreak of lumpy skin disease in Nepal. Transbound Emerg Dis, 67(6), 2280-2281. - PubMed
  2. Alonge, M., Soyk, S., Ramakrishnan, S., Wang, X., Goodwin, S., Sedlazeck, F. J., Lippman, Z. B., & Schatz, M. C. (2019). RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biology, 20(1), 224. - PubMed
  3. Beard, P. M. (2016). Lumpy skin disease: A direct threat to Europe. Veterinary Record, 178(22), 557-558. - PubMed
  4. Biswas, S., Noyce, R. S., Babiuk, L. A., Lung, O., Bulach, D. M., Bowden, T. R., Boyle, D. B., Babiuk, S., & Evans, D. H. (2020). Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound Emerg Dis, 67(1), 80-97. - PubMed
  5. Bowden, T. R., Babiuk, S. L., Parkyn, G. R., Copps, J. S., & Boyle, D. B. (2008). Boyle DBCapripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology, 371(2), 380-393. - PubMed
  6. Bushnell, B. BBMap. Retrieved from: sourceforge.net/projects/bbmap/. - PubMed
  7. Calistri, P., De Clercq, K., Gubbins, S., Klement, E., Stegeman, A., Cortiñas Abrahantes, J., Marojevic, D., Antoniou, S. E., & Broglia, A. (2020). Lumpy skin disease epidemiological report IV: Data collection and analysis. Efsa Journal, 18(2), e06010. - PubMed
  8. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. Bmc Bioinformatics, 10, 421. - PubMed
  9. Casal, J., Allepuz, A., Miteva, A., Pite, L., Tabakovsky, B., Terzievski, D., Alexandrov, T., & Beltrán-Alcrudo, D. (2018). Economic cost of lumpy skin disease outbreaks in three Balkan countries: Albania, Bulgaria and the Former Yugoslav Republic of Macedonia (2016-2017). Transbound Emerg Dis, 65(6), 1680-1688. - PubMed
  10. Efsa. (2018). Lumpy skin disease II. Data collection and analysis. Efsa Journal, 16(2), e05176. - PubMed
  11. European Food Safety Authority. (2018). Lumpy skin disease II. Data collection and analysis. EFSA J, 16(2), e05176. - PubMed
  12. Fay, P. C., Cook, C. G., Wijesiriwardana, N., Tore, G., Comtet, L., Carpentier, A., Shih, B., Freimanis, G., Haga, I. R., & Beard, P. M. (2020). Madin-Darby bovine kidney (MDBK) cells are a suitable cell line for the propagation and study of the bovine poxvirus lumpy skin disease virus. Journal of Virological Methods, 285, 113943. - PubMed
  13. Freeman, T. C., Horsewell, S., Patir, A., Harling-Lee, J., Regan, T., Shih, B. B., Prendergast, J., Hume, D. A., & Angus, T. (2020). Graphia: A platform for the graph-based visualisation and analysis of complex data. bioRxiv, 2020.09.02.279349. - PubMed
  14. Garrison, E.., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907, - PubMed
  15. Gelaye, E., Belay, A., Ayelet, G., Jenberie, S., Yami, M., Loitsch, A., Tuppurainen, E., Grabherr, R., Diallo, A., & Lamien, C. E. (2015). Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure. Antiviral Research, 119, 28-35. - PubMed
  16. Gubser, C., Hué, S., Kellam, P., & Smith, G. L. (2004). Poxvirus genomes: A phylogenetic analysis. Journal of General Virology, 85(Pt 1), 105-117. - PubMed
  17. Klement, E., Broglia, A., Antoniou, S. -. E., Tsiamadis, V., Plevraki, E., Petrović, T., Polaček, V., Debeljak, Z., Miteva, A., Alexandrov, T., Marojevic, D., Pite, L., Kondratenko, V., Atanasov, Z., Gubbins, S., Stegeman, A., & Abrahantes, J. C. (2018). Neethling vaccine proved highly effective in controlling lumpy skin disease epidemics in the Balkans. Preventive Veterinary Medicine, 181, 104595. - PubMed
  18. Kumar, N., Chander, Y., Kumar, R., Khandelwal, N., Riyesh, T., Chaudhary, K., Shanmugasundaram, K., Kumar, S., Kumar, A., Gupta, M. K., Pal, Y., Barua, S., & Tripathi, B. N. (2021). Isolation and characterization of lumpy skin disease virus from cattle in India. Plos One, 16(1), e0241022. - PubMed
  19. Lamien, C. E., Lelenta, M., Goger, W., Silber, R., Tuppurainen, E., Matijevic, M., Luckins, A. G., & Diallo, A. (2011). Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. Journal of Virological Methods, 171(1), 134-140. - PubMed
  20. Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47(W1), W256-W259. - PubMed
  21. Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100. - PubMed
  22. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. - PubMed
  23. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R.; 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. - PubMed
  24. Lu, G., Xie, J., Luo, J., Shao, R., Jia, K., & Li, S. (2020). Lumpy skin disease outbreaks in China, since 3 August 2019. Transbound Emerg Dis, 68(2), 216-219 - PubMed
  25. Madeira, F., Park, Y. M.i, Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). Lopez RThe EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636-W641. - PubMed
  26. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70(1), e102. - PubMed
  27. Sanz-Bernardo, B., Haga, I. R., Wijesiriwardana, N., Basu, S., Larner, W., Diaz, A. V., Langlands, Z., Denison, E., Stoner, J., White, M., Sanders, C., Hawes, P. C., Wilson, A. J., Atkinson, J., Batten, C., Alphey, L., Darpel, K. E., Gubbins, S., & Beard, P. M. (2021). Quantifying and modelling the acquisition and retention of lumpy skin disease virus by haematophagus insects reveals clinically but not subclinically-affected cattle are promoters of viral transmission and key targets for control of disease outbreaks. Journal of Virology, 95(9), e02239-20. - PubMed
  28. Sanz-Bernardo, B., Haga, I. R., Wijesiriwardana, N., Hawes, P. C., Simpson, J., Morrison, L. R., Macintyre, N., Brocchi, E., Atkinson, J., Haegeman, A., De Clercq, K., Darpel, K. E., & Beard, P. M. (2020). Beard PMLumpy skin disease is characterized by severe multifocal dermatitis with necrotizing fibrinoid vasculitis following experimental infection. Veterinary Pathology, 57(3), 388-396. - PubMed
  29. Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. - PubMed
  30. Sprygin, A., Babin, Y., Pestova, Y., Kononova, S., Wallace, D. B., Van Schalkwyk, A., Byadovskaya, O., Diev, V., Lozovoy, D., & Kononov, A. (2018). Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. Plos One, 13(12), e0207480. - PubMed
  31. Sprygin, A., Pestova, Y., Prutnikov, P., & Kononov, A. (2018). Detection of vaccine-like lumpy skin disease virus in cattle and Musca domestica L. flies in an outbreak of lumpy skin disease in Russia in 2017. Transbound Emerg Dis, 65(5), 1137-1144. - PubMed
  32. Sudhakar, S. B., Mishra, N., Kalaiyarasu, S., Jhade, S. K., Hemadri, D., Sood, R., Bal, G. C., Nayak, M. K., Pradhan, S. K., & Singh, V. P. (2020). Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies. Transbound Emerg Dis, 67(6), 2408-2422. - PubMed

Publication Types

Grant support