Display options
Share it on

Am J Clin Nutr. 2021 Sep 12; doi: 10.1093/ajcn/nqab273. Epub 2021 Sep 12.

Pumping supplies alter the microbiome of pumped human milk: An in-home, randomized, crossover trial.

The American journal of clinical nutrition

Sarah M Reyes, Dainelle L Allen, Janet E Williams, Mark A McGuire, Michelle K McGuire, Anthony G Hay, Kathleen M Rasmussen

Affiliations

  1. Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
  2. Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA.
  3. Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
  4. Department of Microbiology, Cornell University, Ithaca, NY, USA.

PMID: 34510180 PMCID: PMC8634608 DOI: 10.1093/ajcn/nqab273

Abstract

BACKGROUND: The human milk microbiome may contribute to the benefits of breastfeeding by providing bacteria to the infant gastrointestinal tract. Many women pump their milk, but the effect of pumping on the milk microbiome is unknown.

OBJECTIVES: Our objective was to determine the effects of pumping supplies on the pumped human milk microbiome.

METHODS: This was an in-home, randomized, crossover trial of 2 collection methods. Women (n = 52) pumped twice within 3.5 h, once with their own breast pumps and milk collection supplies (OWN SUPP) and once with a hospital-grade pump and sterile collection supplies (STER SUPP). Pumping order was randomized. The milk microbiome was characterized by aerobic culturing and 16S ribosomal RNA gene sequencing.

RESULTS: Milk collected with OWN SUPP yielded more total aerobic and gram-negative bacteria than milk collected with STER SUPP, reflecting a 6.6 (adjusted OR; 95% CI: 1.7, 25; P = 0.006) higher odds of containing >104 total aerobic CFU/mL and 19 (adjusted OR; 95% CI: 4.1, 88; P < 0.0001) higher odds of yielding culturable gram-negative bacteria. Milk collected with OWN SUPP yielded more Proteobacterias , including higher relative abundances of Acinetobacter and Stenotrophomonas, compared to milk collected with STER SUPP. Results were consistent across pumping-order groups.

CONCLUSIONS: We demonstrated that pumping supplies altered the milk microbiome. On average, milk collected with OWN SUPP resulted in elevated levels of culturable total and gram-negative bacteria and proteobacterial DNA compared to milk collected with STER SUPP. More research is needed to assess implications for infant health.

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.

Keywords: Proteobacteria; aerobic bacteria; bacterial counts; breastmilk collection; breastmilk expression/methods; crossover study; gram-negative bacteria; microbiota

References

  1. Curr Opin Biotechnol. 2017 Apr;44:63-68 - PubMed
  2. Microbiome. 2018 Dec 17;6(1):226 - PubMed
  3. Breastfeed Med. 2010 Jun;5(3):117-21 - PubMed
  4. J Hosp Infect. 2004 Oct;58(2):146-50 - PubMed
  5. J Nutr. 2021 Feb 1;151(2):278-280 - PubMed
  6. J Nutr. 2017 Sep;147(9):1739-1748 - PubMed
  7. J Biosci. 2012 Dec;37(6):989-98 - PubMed
  8. Cell Host Microbe. 2019 Feb 13;25(2):324-335.e4 - PubMed
  9. Pediatrics. 2013 Nov;132(5):e1227-35 - PubMed
  10. Future Microbiol. 2015;10(10):1609-13 - PubMed
  11. Ann Epidemiol. 2009 Jun;19(6):372-8 - PubMed
  12. Pediatrics. 2012 Mar;129(3):e827-41 - PubMed
  13. Arch Argent Pediatr. 2013 Apr;111(2):115-9 - PubMed
  14. Perspect Clin Res. 2011 Jul;2(3):109-12 - PubMed
  15. J Hum Lact. 2013 Feb;29(1):54-8 - PubMed
  16. Am J Perinatol. 1991 Jan;8(1):25-7 - PubMed
  17. MMWR Morb Mortal Wkly Rep. 2017 Jul 21;66(28):761-762 - PubMed
  18. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9546-51 - PubMed
  19. Nat Methods. 2016 Jul;13(7):581-3 - PubMed
  20. Breastfeed Med. 2014 Dec;9(10):551-4 - PubMed
  21. Nutrients. 2020 Nov 05;12(11): - PubMed
  22. Genome Biol. 2014;15(12):550 - PubMed
  23. J Clin Microbiol. 2008 Mar;46(3):902-8 - PubMed
  24. Microbiol Resour Announc. 2020 Oct 29;9(44): - PubMed
  25. Vet Res Forum. 2013 Summer;4(3):179-83 - PubMed
  26. Adv Nutr. 2014 Sep;5(5):571-3 - PubMed
  27. J Nutr. 2019 Jun 1;149(6):902-914 - PubMed
  28. Matern Child Nutr. 2017 Jul;13(3): - PubMed
  29. J Pediatr Gastroenterol Nutr. 2009 Sep;49(3):343-8 - PubMed
  30. Evid Rep Technol Assess (Full Rep). 2007 Apr;(153):1-186 - PubMed
  31. J Hosp Infect. 2016 Mar;92(3):213-21 - PubMed
  32. Front Pediatr. 2018 Jul 24;6:197 - PubMed
  33. J Pediatric Infect Dis Soc. 2017 Sep 1;6(3):227-230 - PubMed
  34. Cell Host Microbe. 2020 Aug 12;28(2):285-297.e4 - PubMed
  35. J Hosp Infect. 2016 Mar;92(3):226-8 - PubMed
  36. Hum Pathol. 2003 Sep;34(9):929-38 - PubMed
  37. Matern Child Nutr. 2017 Jul;13(3): - PubMed
  38. Case Rep Pediatr. 2018 Jun 13;2018:1543934 - PubMed
  39. Front Nutr. 2019 Apr 17;6:45 - PubMed
  40. Am J Clin Nutr. 2012 Sep;96(3):544-51 - PubMed
  41. Breastfeed Rev. 2006 Nov;14(3):5-9 - PubMed
  42. Pharmacol Res. 2013 Mar;69(1):1-10 - PubMed
  43. JAMA Pediatr. 2017 Jul 1;171(7):647-654 - PubMed
  44. Ecol Evol. 2014 Sep;4(18):3514-24 - PubMed
  45. Sci Rep. 2018 Sep 13;8(1):13767 - PubMed
  46. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 - PubMed
  47. J Obstet Gynecol Neonatal Nurs. 2018 Jul;47(4):547-555 - PubMed
  48. Pediatrics. 2008 Oct;122 Suppl 2:S63-8 - PubMed
  49. Biometrics. 1946 Dec;2(6):110-4 - PubMed
  50. Gut Microbes. 2020 Nov 9;12(1):1667722 - PubMed
  51. Public Health. 2014 May;128(5):399-403 - PubMed
  52. J Clin Microbiol. 2010 Feb;48(2):586-90 - PubMed
  53. Public Health Nutr. 2017 Feb;20(3):492-503 - PubMed
  54. Virulence. 2014 Jan 1;5(1):213-8 - PubMed
  55. Lancet. 1980 Sep 13;2(8194):561-3 - PubMed
  56. Matern Child Nutr. 2017 Jul;13(3): - PubMed
  57. J Res Health Sci. 2012 May 29;13(1):43-7 - PubMed
  58. Biomed Res Int. 2017;2017:9351507 - PubMed
  59. Allergy. 2020 Sep;75(9):2342-2351 - PubMed
  60. Nat Biotechnol. 2019 Aug;37(8):852-857 - PubMed
  61. PLoS One. 2011;6(6):e21313 - PubMed

Publication Types

Grant support