Display options
Share it on

Mol Neurobiol. 2021 Dec;58(12):6111-6120. doi: 10.1007/s12035-021-02517-4. Epub 2021 Aug 28.

NK Cell Subpopulations and Receptor Expression in Recovering SARS-CoV-2 Infection.

Molecular neurobiology

Marina Saresella, Daria Trabattoni, Ivana Marventano, Federica Piancone, Francesca La Rosa, Antonio Caronni, Agata Lax, Luca Bianchi, Paolo Banfi, Jorge Navarro, Elisabetta Bolognesi, Milena Zanzottera, Franca Rosa Guerini, Mario Clerici

Affiliations

  1. IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy. [email protected].
  2. Department of Biomedical and Clinical Sciences "L. Sacco,", University of Milan, Milan, Italy.
  3. IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro, 66, 20148, Milan, Italy.
  4. Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.

PMID: 34453271 PMCID: PMC8397607 DOI: 10.1007/s12035-021-02517-4

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of coronavirus disease (COVID-19). Whereas in most cases COVID-19 is asymptomatic or pauci-symptomatic, extremely severe clinical forms are observed. In this case, complex immune dysregulations and an excessive inflammatory response are reported and are the main cause of morbidity and mortality. Natural killer cells are key players in the control of viral infection, and their activity is regulated by a tight balance between activating and inhibitory receptors; an alteration of NK activity was suggested to be associated with the development of severe forms of COVID-19. In this study, we analyzed peripheral NK cell subpopulations and the expression of activating and inhibitory receptors in 30 patients suffering from neurological conditions who recovered from mild, moderate, or severe SARS-CoV-2 infection, comparing the results to those of 10 SARS-CoV-2-uninfected patients. Results showed that an expansion of NK subset with lower cytolytic activity and an augmented expression of the 2DL1 inhibitory receptor, particularly when in association with the C2 ligand (KIR2DL1-C2), characterized the immunological scenario of severe COVID-19 infection. An increase of NK expressing the ILT2 inhibitory receptor was instead seen in patients recovering from mild or moderate infection compared to controls. Results herein suggest that the KIR2DL1-C2 NK inhibitory complex is a risk factor toward the development of severe form of COVID-19. Our results confirm that a complex alteration of NK activity is present in COVID-19 infection and offer a molecular explanation for this observation.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: COVID-19; Innate immunity; KIR; NK; SARS-CoV-2

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B et al (2019) China novel coronavirus investigating and research seam. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017 - PubMed
  2. Tan L, Wang Q, Zhang D, Ding J, Huang Q et al (2020) Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct Target Ther 5(1):33. https://doi.org/10.1038/s41392-020-0148-4 - PubMed
  3. Qin C, Zhou L, Hu Z, Zhang S, Yang S et al (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71(15):762–768. https://doi.org/10.1093/cid/ciaa248 - PubMed
  4. Nelemans T, Kikkert M (2019) Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses 11:961. https://doi.org/10.3390/v11100961 - PubMed
  5. Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138:30–50. https://doi.org/10.1016/j.cell.2009.06.036 - PubMed
  6. Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S (2011) Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol 780:45–55. https://doi.org/10.1007/978-1-4419-5632-3_5 - PubMed
  7. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. https://doi.org/10.1126/science.1198687 - PubMed
  8. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G et al (2016) Human CD56bright NK cells: An update. J Immunol 196(7):2923–2931. https://doi.org/10.4049/jimmunol.1502570 - PubMed
  9. Poli A, Michel T, Theresine M, Andres E, Hentges F et al (2009) CD56bright natural killer (NK) cells: An important NK cell subset. Immunology 126:458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x - PubMed
  10. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640. https://doi.org/10.1016/s1471-4906(01)02060-9 - PubMed
  11. Clements CS, Kjer-Nielsen L, Kostenko L, Hoare HL, Dunstone MA et al (2005) Crystal structure of HLA-G: A nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U S A A102(9):3360–3365. https://doi.org/10.1073/pnas.0409676102 - PubMed
  12. Osman M, Faridi RM, Sligl W, Shabani-Rad MT, Dharmani-Khan P et al (2020) Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19. Blood Adv 4(20):5035–5039. https://doi.org/10.1182/bloodadvances.2020002650 - PubMed
  13. Zheng M, Gao Y, Wang G, Song G, Liu S et al (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 17(5):533–535. https://doi.org/10.1038/s41423-020-0402-2 - PubMed
  14. Demaria O, Carvelli J, Batista L, Thibult ML, Morel A et al (2020) Identification of druggable inhibitory immune checkpoints on natural killer cells in COVID-19. Cell Mol Immunol 17(9):995–997. https://doi.org/10.1038/s41423-020-0493-9 - PubMed
  15. Chen T, Wu D, Chen H, Yan W, Yang D et al (2020) Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 368:m1091. https://doi.org/10.1136/bmj.m1091 - PubMed
  16. Caronni A, Liaci E, Bianchi A, Viganò A, Marenco F et al (2021) Clinical course of SARS-CoV-2 infection in patients with severe acquired brain injury and a disorder of consciousness: An observational study. Brain Inj 35(5):520–529. https://doi.org/10.1080/02699052.2021.1887937 - PubMed
  17. Middleton D, Williams F, Halfpenny IA (2005) KIR genes. Transpl Immunol 14:135–142. https://doi.org/10.1016/j.trim.2005.03.002 - PubMed
  18. Martin MP, Gao X, Lee JH, Nelson GW, Detels R et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31(4):429–434. https://doi.org/10.1038/ng934 - PubMed
  19. Gonzalez VD, Falconer K, Björkström NK, Blom KG, Weiland O et al (2009) Expansion of functionally skewed CD56-negative NK cells in chronic hepatitis C virus infection: Correlation with outcome of pegylated IFN-alpha and ribavirin treatment. J Immunol 183(10):6612–6618. https://doi.org/10.4049/jimmunol.0901437 - PubMed
  20. Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S et al (2003) Natural killer cells in HIV-1 infection: Dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci U S A 100(25):15011–15016. https://doi.org/10.1073/pnas.2336091100 - PubMed
  21. Müller-Durovic B, Grählert J, Devine OP, Akbar AN, Hess C (2019) CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging 11:724–740. https://doi.org/10.18632/aging.101774 - PubMed
  22. Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106:3366–3369. https://doi.org/10.1182/blood-2005-03-1100 - PubMed
  23. Ishiyama K, Kitawaki T, Otsuka Y, Takaori-Kondo A, Kadowaki N (2021) Programmed cell death 1-expressing CD56-negative natural killer (NK) cell expansion is a hallmark of chronic NK cell activation during dasatinib treatment. Cancer Sci 112:523–536. https://doi.org/10.1111/cas.14692 - PubMed
  24. Smith SL, Kennedy PR, Stacey KB, Worboys JD, Yarwood A et al (2020) Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv 4:1388–1406. https://doi.org/10.1182/bloodadvances.2019000699 - PubMed
  25. Yang C, Siebert JR, Burns R, Gerbec ZJ, Bonacci B et al (2019) Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome. Nat Commun 10:3931. https://doi.org/10.1038/s41467-019-11947-7 - PubMed
  26. Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D et al (2005) Characterization of CD56-CD16+ natural killer (NK) cells: A highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102:2886–2891. https://doi.org/10.1073/pnas.0409872102 - PubMed
  27. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469. https://doi.org/10.1182/blood-2007-09-077438 - PubMed
  28. Wilk AJ, Blish CA (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629–641. https://doi.org/10.1002/JLB.6RI0917-390R - PubMed
  29. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ et al (2020) A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 26(7):1070–1076. https://doi.org/10.1038/s41591-020-0944-y - PubMed
  30. Lee J, Zhang T, Hwang I, Kim A, Nitschke L et al (2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42(3):431–442. https://doi.org/10.1016/j.immuni.2015.02.013 - PubMed
  31. Zhang T, Scott JM, Hwang I, Kim S (2013) Cutting edge: Antibody dependent memory-like NK cells distinguished by FcRγ deficiency. J Immunol 190:1402–1406. https://doi.org/10.4049/jimmunol.1203034 - PubMed
  32. Costa-Garcia M, Vera A, Moraru M, Vilches C, López-Botet M et al (2015) Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus. J Immunol 194(6):2715–2724. https://doi.org/10.4049/jimmunol.1402281 - PubMed
  33. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA et al (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583(7815):290–295. https://doi.org/10.1038/s41586-020-2349-y - PubMed
  34. Varchetta S, Mele D, Oliviero B, Mantovani S, Ludovisi S et al (2021) Unique immunological profile in patients with COVID-19. Cell Mol Immunol 18(3):604–612. https://doi.org/10.1038/s41423-020-00557-9 - PubMed
  35. Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J et al (2021) Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell 184(7):1836–1857.e22. https://doi.org/10.1016/j.cell.2021.02.018 - PubMed
  36. Guerini FR, Clerici M (2012) NK cells in human disease: An evolving story. Clin Immunol 43:203–206. https://doi.org/10.1016/j.clim.2012.03.003 - PubMed
  37. Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA et al (2021) The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 92:107361. https://doi.org/10.1016/j.intimp.2020.107361 - PubMed
  38. Wawina-Bokalanga T, Vanmechelen B, Lhermitte V, Martí-Carreras J, Vergote V et al (2021) Human diversity of killer cell immunoglobulin-like receptors and human leukocyte antigen class I alleles and Ebola virus disease outcomes. Emerg Infect Dis 27(1):76–84. https://doi.org/10.3201/eid2701.202177 - PubMed
  39. Guerini FR, Mancuso R, Agostini S, Agliardi C, Zanzottera M et al (2012) Activating KIR/HLA complexes in classic Kaposi's sarcoma. Infect Agent Cancer 7:9. https://doi.org/10.1186/1750-9378-7-9 - PubMed
  40. Soria A, Guerini FR, Bandera A, Bolognesi E, Uglietti A et al (2011) KIR-HLA genotypes in HIV-infected patients lacking immunological recovery despite effective antiretroviral therapy. PLoS One 6(11):e27349. https://doi.org/10.1371/journal.pone.0027349 - PubMed
  41. Guerini FR, Lo Caputo S, Gori A, Bandera A, Mazzotta F et al (2011) Under representation of the inhibitory KIR3DL1 molecule and the KIR3DL1+/BW4+ complex in HIV exposed seronegative individuals. J Infect Dis 203(9):1235–1239. https://doi.org/10.1093/infdis/jir020 - PubMed

Publication Types