Display options
Share it on

J Cell Physiol. 2021 Sep 13; doi: 10.1002/jcp.30573. Epub 2021 Sep 13.

Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk.

Journal of cellular physiology

Forough Alemi, Aydin Raei Sadigh, Faezeh Malakoti, Yusuf Elhaei, Seyed Hamed Ghaffari, Masomeh Maleki, Zatollah Asemi, Bahman Yousefi, Niloufar Targhazeh, Maryam Majidinia

Affiliations

  1. Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
  2. Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
  3. Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
  4. Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
  5. Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.

PMID: 34515349 DOI: 10.1002/jcp.30573

Abstract

The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.

© 2021 Wiley Periodicals LLC.

Keywords: DNA damage response; PI3K/Akt; malignancy; signaling pathway

References

  1. Alemi, F., Zarezadeh, R., Sadigh, A. R., Hamishehkar, H., Rahimi, M., Majidinia, M., Asemi, Z., Ebrahimi-Kalan, A., Yousefi, B., & Rashtchizadeh, N. (2020). Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. Journal of Drug Delivery Science and Technology, 60, 101974. - PubMed
  2. Aliyari, Z., Alemi, F., Brazvan, B., Taye fi Nasrabadi, H., & Charoudeh, H. N. (2015). Cd26+ cord blood mononuclear cells significantly produce B, T, and Nk cells. Iranian Journal of Immunology, 12(1), 16-26. - PubMed
  3. Asati, V., Mahapatra, D. K., & Bharti, S. K. (2016). PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 109, 314-341. https://doi.org/10.1016/j.ejmech.2016.01.012 - PubMed
  4. Ashley, A. K., & Kemp, C. J. (2018). DNA-PK, ATM, and ATR: PIKKing on p53. Cell Cycle, 17(3), 275-276. https://doi.org/10.1080/15384101.2017.1412147 - PubMed
  5. Ashley, A. K., Shrivastav, M., Nie, J., Amerin, C., Troksa, K., Glanzer, J. G., Liu, S., Opiyo, S. O., Dimitrova, D. D., Le, P., Sishc, B., Bailey, S. M., Oakley, G. G., & Nickoloff, J. A. (2014). DNA-PK phosphorylation of RPA32 Ser4/Ser8 regulates replication stress checkpoint activation, fork restart, homologous recombination and mitotic catastrophe. DNA Repair (Amst), 21, 131-139. https://doi.org/10.1016/j.dnarep.2014.04.008 - PubMed
  6. Bandhakavi, S., Kim, Y. M., Ro, S. H., Xie, H., Onsongo, G., Jun, C. B., Kim, D. H., & Griffin, T. J. (2010). Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Molecular & Cellular Proteomics, 9(2), 403-414. https://doi.org/10.1074/mcp.M900326-MCP200 - PubMed
  7. Bar, J., Lukaschuk, N., Zalcenstein, A., Wilder, S., Seger, R., & Oren, M. (2005). The PI3K inhibitor LY294002 prevents p53 induction by DNA damage and attenuates chemotherapy-induced apoptosis. Cell Death & Differentiation, 12(12), 1578-1587. - PubMed
  8. Bartek, J., & Lukas, J. (2007). DNA damage checkpoints: From initiation to recovery or adaptation. Current Opinion in Cell Biology, 19(2), 238-245. https://doi.org/10.1016/j.ceb.2007.02.009 - PubMed
  9. Bassi, C., Ho, J., Srikumar, T., Dowling, R. J., Gorrini, C., Miller, S. J., Mak, T. W., Neel, B. G., Raught, B., & Stambolic, V. (2013). Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science, 341(6144), 395-399. - PubMed
  10. Basu, A. K. (2018). DNA damage, mutagenesis and cancer. International Journal of Molecular Sciences, 19(4):970. https://doi.org/10.3390/ijms19040970 - PubMed
  11. Bhardwaj, A., Rosen, D., Liu, M., Liu, Y., Hao, Q., Ganesan, N., Etzel, C. J., Gullett, A., Albarracin, C. T., & Bedrosian, I. (2014). Suppression of Akt-mTOR pathway-a novel component of oncogene induced DNA damage response barrier in breast tumorigenesis. PLoS One, 9(5), e97076. https://doi.org/10.1371/journal.pone.0097076 - PubMed
  12. Bieging-Rolett, K. T., Johnson, T. M., Brady, C. A., Beaudry, V. G., Pathak, N., Han, S., & Attardi, L. D. (2016). P19 Arf is required for the cellular response to chronic DNA damage. Oncogene, 35(33), 4414-4421. - PubMed
  13. Blackford, A. N., & Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Molecular Cell, 66(6), 801-817. https://doi.org/10.1016/j.molcel.2017.05.015 - PubMed
  14. Blagih, J., Buck, M. D., & Vousden, K. H. (2020). p53, cancer and the immune response. Journal of Cell Science, 133(5), jcs237453. https://doi.org/10.1242/jcs.237453 - PubMed
  15. Boichuk, S., Bikinieva, F., Nurgatina, I., Dunaev, P., Valeeva, E., Aukhadieva, A., Sabirov, A., & Galembikova, A. (2020). Inhibition of AKT-signaling sensitizes soft tissue sarcomas (STS) and gastrointestinal stromal tumors (GIST) to doxorubicin via targeting of homology-mediated DNA repair. International Journal of Molecular Sciences, 21(22), 8842. - PubMed
  16. Broering, T. J., Alavattam, K. G., Sadreyev, R. I., Ichijima, Y., Kato, Y., Hasegawa, K., Camerini-Otero, R. D., Lee, J. T., Andreassen, P. R., & Namekawa, S. H. (2014). BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. Journal of Cell Biology, 205(5), 663-675. - PubMed
  17. Brown, J. M., & Wilson, W. R. (2004). Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer, 4(6), 437-447. https://doi.org/10.1038/nrc1367 - PubMed
  18. Cazzalini, O., Scovassi, A. I., Savio, M., Stivala, L. A., & Prosperi, E. (2010). Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutation Research/DNA Repair, 704(1-3), 12-20. https://doi.org/10.1016/j.mrrev.2010.01.009 - PubMed
  19. Chang, L., Graham, P. H., Ni, J., Hao, J., Bucci, J., Cozzi, P. J., & Li, Y. (2015). Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Critical Reviews in Oncology/Hematology, 96(3), 507-517. https://doi.org/10.1016/j.critrevonc.2015.07.005 - PubMed
  20. Chen, B. J. (2001). Triptolide, a novel immunosuppressive and anti-inflammatory agent purified from a Chinese herb Tripterygium wilfordii Hook F. Leukemia and Lymphoma, 42(3), 253-265. https://doi.org/10.3109/10428190109064582 - PubMed
  21. Chen, D., Lin, X., Zhang, C., Liu, Z., Chen, Z., Li, Z., Wang, J., Li, B., Hu, Y., Dong, B., Shen, L., Ji, J., Gao, J., & Zhang, X. (2018). Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway. Cell Death & Disease, 9(2), 123. https://doi.org/10.1038/s41419-017-0132-2 - PubMed
  22. Chen, J., Chen, Z., Huang, Z., Yu, H., Li, Y., & Huang, W. (2019). Formiminotransferase cyclodeaminase suppresses hepatocellular carcinoma by modulating cell apoptosis, DNA damage, and phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway. Medical Science Monitor, 25, 4474-4484. https://doi.org/10.12659/msm.916202 - PubMed
  23. Chiou, S. H., Wang, M. L., Chou, Y. T., Chen, C. J., Hong, C. F., Hsieh, W. J., Chang, H. T., Chen, Y. S., Lin, T. W., Hsu, H. S., & Wu, C. W. (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Research, 70(24), 10433-10444. https://doi.org/10.1158/0008-5472.can-10-2638 - PubMed
  24. Chu, C., Geng, Y., Zhou, Y., & Sicinski, P. (2021). Cyclin E in normal physiology and disease states. Trends in Cell Biology, 31, 732-746. - PubMed
  25. Cimprich, K. A., & Cortez, D. (2008). ATR: An essential regulator of genome integrity. Nature Reviews Molecular Cell Biology, 9(8), 616-627. https://doi.org/10.1038/nrm2450 - PubMed
  26. Dai, Y., & Grant, S. (2010). New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clinical Cancer Research, 16(2), 376-383. https://doi.org/10.1158/1078-0432.ccr-09-1029 - PubMed
  27. Demel, H. R., Feuerecker, B., Piontek, G., Seidl, C., Blechert, B., Pickhard, A., & Essler, M. (2015). Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. American Journal of Cancer Research, 5(5), 1649-1664. - PubMed
  28. Dong, P., Hao, F., Dai, S., & Tian, L. (2018). Combination therapy Eve and Pac to induce apoptosis in cervical cancer cells by targeting PI3K/AKT/mTOR pathways. Journal of Receptor and Signal Transduction Research, 38(1), 83-88. https://doi.org/10.1080/10799893.2018.1426610 - PubMed
  29. Duran, G. E., Wang, Y. C., Moisan, F., Francisco, E. B., & Sikic, B. I. (2017). Decreased levels of baseline and drug-induced tubulin polymerisation are hallmarks of resistance to taxanes in ovarian cancer cells and are associated with epithelial-to-mesenchymal transition. British Journal of Cancer, 116(10), 1318-1328. https://doi.org/10.1038/bjc.2017.102 - PubMed
  30. Enari, M., Matsushima-Hibiya, Y., Miyazaki, M., & Otomo, R. (2017). Studies of ATM kinase activity using engineered ATM sensitive to ATP Analogues (ATM-AS). Methods in Molecular Biology, 1599, 145-156. https://doi.org/10.1007/978-1-4939-6955-5_11 - PubMed
  31. Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 7(8), 606-619. https://doi.org/10.1038/nrg1879 - PubMed
  32. Enriquez-Rios, V., Dumitrache, L. C., Downing, S. M., Li, Y., Brown, E. J., Russell, H. R., & McKinnon, P. J. (2017). DNA-PKcs, ATM, and ATR Interplay maintains genome integrity during neurogenesis. Journal of Neuroscience, 37(4), 893-905. https://doi.org/10.1523/jneurosci.4213-15.2016 - PubMed
  33. Fang, L., Li, G., Liu, G., Lee, S. W., & Aaronson, S. A. (2001). p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO Journal, 20(8), 1931-1939. https://doi.org/10.1093/emboj/20.8.1931 - PubMed
  34. Feng, J., Liang, J., Li, J., Li, Y., Liang, H., Zhao, X., Mcnutt, M. A., & Yin, Y. (2015). PTEN controls the DNA replication process through MCM2 in response to replicative stress. Cell Reports, 13(7), 1295-1303. - PubMed
  35. Feng, X.-J., Liu, S.-X., Wu, C., Kang, P.-P., Liu, Q.-J., Hao, J., Li, H. B., Li, F., Zhang, Y. J., Fu, X. H., Zhang, S. B., & Zuo, L. F. (2014). The PTEN/PI3K/Akt signaling pathway mediates HMGB1-induced cell proliferation by regulating the NF-κB/cyclin D1 pathway in mouse mesangial cells. American Journal of Physiology-Cell Physiology, 306(12), C1119-C1128. - PubMed
  36. Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M. S., Timmers, C., Hejna, J., Grompe, M., & D'Andrea, A. D. (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Molecular Cell, 7(2), 249-262. https://doi.org/10.1016/s1097-2765(01)00173-3 - PubMed
  37. Gewandter, J. S., Bambara, R. A., & O'Reilly, M. A. (2011). The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. Cell Cycle, 10(15), 2561-2567. https://doi.org/10.4161/cc.10.15.16347 - PubMed
  38. Gewandter, J. S., Bambara, R. A., & O'Reilly, M. A. (2011). The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. Cell Cycle, 10(15), 2561-2567. - PubMed
  39. Gil del Alcazar, C. R., Hardebeck, M. C., Mukherjee, B., Tomimatsu, N., Gao, X., Yan, J., Xie, X. J., Bachoo, R., Li, L., Habib, A. A., & Burma, S. (2014). Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma. Clinical Cancer Research, 20(5), 1235-1248. https://doi.org/10.1158/1078-0432.ccr-13-1607 - PubMed
  40. Goodwin, J. F., & Knudsen, K. E. (2014). Beyond DNA repair: DNA-PK function in cancer. Cancer Discov, 4(10), 1126-1139. https://doi.org/10.1158/2159-8290.cd-14-0358 - PubMed
  41. Green, D. R., & Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature, 458(7242), 1127-1130. https://doi.org/10.1038/nature07986 - PubMed
  42. Grondona, P., Bucher, P., Schulze-Osthoff, K., Hailfinger, S., & Schmitt, A. (2018). NF-κB activation in lymphoid malignancies: Genetics, signaling, and targeted therapy. Biomedicines, 6(2):38. https://doi.org/10.3390/biomedicines6020038 - PubMed
  43. Gubanova, E., Issaeva, N., Gokturk, C., Djureinovic, T., & Helleday, T. (2013). SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle, 12(24), 3770-3780. https://doi.org/10.4161/cc.26660 - PubMed
  44. Guo, F., Li, J., Du, W., Zhang, S., O'Connor, M., Thomas, G., Kozma, S., Zingarelli, B., Pang, Q., & Zheng, Y. (2013). mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia, 27(10), 2040-2046. https://doi.org/10.1038/leu.2013.93 - PubMed
  45. Guo, X., He, D., Zhang, E., Chen, J., Chen, Q., Li, Y., Yang, L., Yang, Y., Zhao, Y., Wang, G., He, J., & Cai, Z. (2018). HMGB1 knockdown increases MM cell vulnerability by regulating autophagy and DNA damage repair. Journal of Experimental & Clinical Cancer Research, 37(1), 205. - PubMed
  46. Hartman, A.-R., & Ford, J. M. (2002). BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genetics, 32(1), 180-184. - PubMed
  47. He, Y., Ding, Y., Wang, D., Zhang, W., Chen, W., Liu, X., Qin, W., Qian, X., Chen, H., & Guo, Z. (2015). HMGB1 bound to cisplatin-DNA adducts undergoes extensive acetylation and phosphorylation in vivo. Chemical Science, 6(3), 2074-2078. - PubMed
  48. Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. https://doi.org/10.1038/35037710 - PubMed
  49. Horn, D., Hess, J., Freier, K., Hoffmann, J., & Freudlsperger, C. (2015). Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma. Expert Opinion on Therapeutic Targets, 19(6), 795-805. https://doi.org/10.1517/14728222.2015.1012157 - PubMed
  50. Hou, S. Q., Ouyang, M., Brandmaier, A., Hao, H., & Shen, W. H. (2017). PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. BioEssays, 39(10), 1700082. - PubMed
  51. Houghton, P. J. (2010). Everolimus. Clinical Cancer Research, 16(5), 1368-1372. https://doi.org/10.1158/1078-0432.ccr-09-1314 - PubMed
  52. Huang, T. -T., Lampert, E. J., Coots, C., & Lee, J.-M. (2020). Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treatment Reviews, 86, 86. - PubMed
  53. Jane, E. P., Premkumar, D. R., Morales, A., Foster, K. A., & Pollack, I. F. (2014). Inhibition of phosphatidylinositol 3-kinase/AKT signaling by NVP-BKM120 promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. Journal of Pharmacology and Experimental Therapeutics, 350(1), 22-35. https://doi.org/10.1124/jpet.114.212910 - PubMed
  54. Jiang, N., Dai, Q., Su, X., Fu, J., Feng, X., & Peng, J. (2020). Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Molecular Biology Reports, 47(6), 4587-4629. https://doi.org/10.1007/s11033-020-05435-1 - PubMed
  55. Jin, M. H., & Oh, D.-Y. (2019). ATM in DNA repair in cancer. Pharmacology and Therapeutics, 203, 107391. https://doi.org/10.1016/j.pharmthera.2019.07.002 - PubMed
  56. Jung, S. H., Hwang, H. J., Kang, D., Park, H. A., Lee, H. C., Jeong, D., Lee, K., Park, H. J., Ko, Y. G., & Lee, J. S. (2019). mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating. Oncogene, 38(10), p531639-1650. - PubMed
  57. Juvekar, A., Hu, H., Yadegarynia, S., Lyssiotis, C. A., Ullas, S., Lien, E. C., Bellinger, G., Son, J., Hok, R. C., Seth, P., Daly, M. B., Kim, B., Scully, R., Asara, J. M., Cantley, L. C., & Wulf, G. M. (2016). Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proceedings of the National Academy of Sciences, 113(30), E4338-E4347. - PubMed
  58. Kao, G. D., Jiang, Z., Fernandes, A. M., Gupta, A. K., & Maity, A. (2007). Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. Journal of Biological Chemistry, 282(29), 21206-21212. https://doi.org/10.1074/jbc.M703042200 - PubMed
  59. Karimian, A., Mir, S. M., Parsian, H., Refieyan, S., Mirza-Aghazadeh-Attari, M., Yousefi, B., & Majidinia, M. (2019). Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. Journal of Cellular Biochemistry, 120(6), 10248-10272. https://doi.org/10.1002/jcb.28309 - PubMed
  60. Kavallaris, M. (2010). Microtubules and resistance to tubulin-binding agents. Nature Reviews Cancer, 10(3), 194-204. https://doi.org/10.1038/nrc2803 - PubMed
  61. Khan, K. H., Wong, M., Rihawi, K., Bodla, S., Morganstein, D., Banerji, U., & Molife, L. R. (2016). Hyperglycemia and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) inhibitors in phase I trials: Incidence, predictive factors, and management. The oncologist, 21(7), 855-860. https://doi.org/10.1634/theoncologist.2015-0248 - PubMed
  62. Kim, H., Chen, J., & Yu, X. (2007). Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science, 316(5828), 1202-1205. - PubMed
  63. Kim, J.-S., Lee, C., Bonifant, C. L., Ressom, H., & Waldman, T. (2007). Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Molecular and Cellular Biology, 27(2), 662-677. - PubMed
  64. Kim, S. H., Kang, J. G., Kim, C. S., Ihm, S. H., Choi, M. G., Yoo, H. J., & Lee, S. J. (2016). Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-κB signal pathways in thyroid carcinoma cells. Biomedicine & Pharmacotherapy, 83, 22-32. https://doi.org/10.1016/j.biopha.2016.06.014 - PubMed
  65. Kirkpatrick, D. S., Bustos, D. J., Dogan, T., Chan, J., Phu, L., Young, A., Friedman, L. S., Belvin, M., Song, Q., Bakalarski, C. E., & Hoeflich, K. P. (2013). Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition. Proceedings of the National Academy of Sciences, 110(48), 19426-19431. - PubMed
  66. Krynetskaia, N. F., Phadke, M. S., Jadhav, S. H., & Krynetskiy, E. Y. (2009). Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Molecular Cancer Therapeutics, 8(4), 864-872. - PubMed
  67. Landry, M., DuRoss, A., Neufeld, M., Hahn, L., Sahay, G., Luxenhofer, R., & Sun, C. (2020). Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Materials Today Bio, 8, 100082. - PubMed
  68. Lange, S. S., Mitchell, D. L., & Vasquez, K. M. (2008). High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10320-10325. https://doi.org/10.1073/pnas.0803181105 - PubMed
  69. Lee, E. R., Kim, J. Y., Kang, Y. J., Ahn, J. Y., Kim, J. H., Kim, B. W., Choi, H. Y., Jeong, M. Y., & Cho, S. G. (2006). Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochimica et Biophysica Acta/General Subjects, 1763(9), 958-968. https://doi.org/10.1016/j.bbamcr.2006.06.006 - PubMed
  70. Lempiäinen, H., & Halazonetis, T. D. (2009). Emerging common themes in regulation of PIKKs and PI3Ks. The EMBO Journal, 28(20), 3067-3073. - PubMed
  71. Li, B., Zhang, J., Su, Y., Hou, Y., Wang, Z., Zhao, L., Sun, S., & Fu, H. (2019). Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Molecular Medicine Reports, 20(4), 3793-3801. - PubMed
  72. Liu, P., Gan, W., Guo, C., Xie, A., Gao, D., Guo, J., Zhang, J., Willis, N., Su, A., Asara, J. M., Scully, R., & Wei, W. (2015). Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair. Molecular Cell, 57(4), 648-661. https://doi.org/10.1016/j.molcel.2015.01.005 - PubMed
  73. Liu, Q., Turner, K. M., Alfred Yung, W. K., Chen, K., & Zhang, W. (2014). Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro-oncology, 16(10), 1313-1323. https://doi.org/10.1093/neuonc/nou058 - PubMed
  74. Liu, Z., Wu, J., & Yu, X. (2007). CCDC98 targets BRCA1 to DNA damage sites. Nature Structural & Molecular Biology, 14(8), 716-720. - PubMed
  75. Lou, M., Li, R., Lang, T. Y., Zhang, L. Y., Zhou, Q., & Li, L. (2021). Aberrant methylation of GADD45A is associated with decreased radiosensitivity in cervical cancer through the PI3K/AKT signaling pathway. Oncology Letters, 21(1), 8. https://doi.org/10.3892/ol.2020.12269 - PubMed
  76. Lovejoy, C. A., & Cortez, D. (2009). Common mechanisms of PIKK regulation. DNA Repair (Amst), 8(9), 1004-1008. https://doi.org/10.1016/j.dnarep.2009.04.006 - PubMed
  77. Lundgren, K., Zhang, H., Brekken, J., Huser, N., Powell, R. E., Timple, N., Busch, D. J., Neely, L., Sensintaffar, J. L., Yang, Y. C., McKenzie, A., Friedman, J., Scannevin, R., Kamal, A., Hong, K., Kasibhatla, S. R., Boehm, M. F., & Burrows, F. J. (2009). BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Molecular Cancer Therapeutics, 8(4), 921-929. https://doi.org/10.1158/1535-7163.mct-08-0758 - PubMed
  78. Lyu, W. J., Shu, Y. J., Liu, Y. B., & Dong, P. (2020). Topoisomerase II alpha promotes gallbladder cancer proliferation and metastasis through activating phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Chin Med J (Engl), 133(19), 2321-2329. https://doi.org/10.1097/cm9.0000000000001075 - PubMed
  79. Ma, B., Guo, W., Shan, M., Zhang, N., Ma, B., & Sun, G. (2020). BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells. Open Life Sciences, 15(1), 501-510. https://doi.org/10.1515/biol-2020-0054 - PubMed
  80. Ma, J., Benitez, J. A., Li, J., Miki, S., Ponte de Albuquerque, C., Galatro, T., Orellana, L., Zanca, C., Reed, R., Boyer, A., Koga, T., Varki, N. M., Fenton, T. R., Nagahashi Marie, S. K., Lindahl, E., Gahman, T. C., Shiau, A. K., Zhou, H., DeGroot, J., Furnari, F. B. (2019). Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell, 35(3), 504-518. e507. - PubMed
  81. Ma, Y., Vassetzky, Y., & Dokudovskaya, S. (2018). mTORC1 pathway in DNA damage response. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1865(9), 1293-1311. - PubMed
  82. Maidarti, M., Clarkson, Y. L., McLaughlin, M., Anderson, R. A., & Telfer, E. E. (2019). Inhibition of PTEN activates bovine non-growing follicles in vitro but increases DNA damage and reduces DNA repair response. Human Reproduction, 34(2), 297-307. https://doi.org/10.1093/humrep/dey354 - PubMed
  83. Maira, S. M., Stauffer, F., Brueggen, J., Furet, P., Schnell, C., Fritsch, C., Brachmann, S., Chène, P., De Pover, A., Schoemaker, K., Fabbro, D., Gabriel, D., Simonen, M., Murphy, L., Finan, P., Sellers, W., & García-Echeverría, C. (2008). Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Molecular Cancer Therapeutics, 7(7), 1851-1863. https://doi.org/10.1158/1535-7163.mct-08-0017 - PubMed
  84. Majidinia, M., & Yousefi, B. (2017). DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst), 54, 22-29. https://doi.org/10.1016/j.dnarep.2017.03.009 - PubMed
  85. Malakoti, F., Alemi, F., Younesi, S., Majidinia, M., Yousefi, B., Morovat, P., Khelghati, N., Maleki, M., Karimian, A., & Asemi, Z. (2021). The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst), 98, 103036. https://doi.org/10.1016/j.dnarep.2020.103036 - PubMed
  86. Manning, B. D., & Toker, A. (2017). AKT/PKB signaling: Navigating the network. Cell, 169(3), 381-405. https://doi.org/10.1016/j.cell.2017.04.001 - PubMed
  87. Maréchal, A., & Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology, 5(9), https://doi.org/10.1101/cshperspect.a012716 - PubMed
  88. Martini, M., De Santis, M. C., Braccini, L., Gulluni, F., & Hirsch, E. (2014). PI3K/AKT signaling pathway and cancer: An updated review. Annals of Medicine, 46(6), 372-383. - PubMed
  89. Mayo, L. D., & Donner, D. B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences, 98(20), 11598-11603. - PubMed
  90. McIlwain, D. R., Pan, Q., Reilly, P. T., Elia, A. J., McCracken, S., Wakeham, A. C., Itie-Youten, A., Blencowe, B. J., & Mak, T. W. (2010). Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12186-12191. https://doi.org/10.1073/pnas.1007336107 - PubMed
  91. Medina-Medina, I., Martínez-Sánchez, M., Hernández-Monge, J., Fahraeus, R., Muller, P., & Olivares-Illana, V. (2018). p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Science, 27(5), 976-986. - PubMed
  92. Medová, M., Medo, M., Hovhannisyan, L., Maldonado, C. M., Aebersold, D. M., & Zimmer, Y. (2020). DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacology & Therapeutics, 215, 107617. - PubMed
  93. Menolfi, D., & Zha, S. (2020). ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: Inhibition ≠ deletion. Cell & Bioscience, 10, 8. https://doi.org/10.1186/s13578-020-0376-x - PubMed
  94. Ming, M., Feng, L., Shea, C. R., Soltani, K., Zhao, B., Han, W., Smart, R. C., Trempus, C. S., & He, Y. Y. (2011). PTEN positively regulates UVB-induced DNA damage repair. Cancer Research, 71(15), 5287-5295. - PubMed
  95. Ming, M., & He, Y.-Y. (2012). PTEN in DNA damage repair. Cancer Letters, 319(2), 125-129. - PubMed
  96. Miyata, S., Fukuda, Y., Tojima, H., Matsuzaki, K., Kitanaka, S., & Sawada, H. (2015). Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTEN by the topoisomerase inhibitor 3EZ, 20Ac-ingenol. Leukemia Research, 39(9), 927-932. https://doi.org/10.1016/j.leukres.2015.06.006 - PubMed
  97. Moll, U. M., & Petrenko, O. (2003). The MDM2-p53 interaction. Molecular Cancer Research, 1(14), 1001-1008. - PubMed
  98. Mukherjee, A., & Vasquez, K. M. (2016). HMGB1 interacts with XPA to facilitate the processing of DNA interstrand crosslinks in human cells. Nucleic Acids Research, 44(3), 1151-1160. - PubMed
  99. Mukherjee, B., Tomimatsu, N., Amancherla, K., Camacho, C. V., Pichamoorthy, N., & Burma, S. (2012). The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia, 14(1), 34-43. https://doi.org/10.1593/neo.111512 - PubMed
  100. Naderali, E., Valipour, B., Khaki, A. A., Soleymani Rad, J., Alihemmati, A., Rahmati, M., & Nozad Charoudeh, H. (2019). Positive effects of PI3K/Akt signaling inhibition on PTEN and P53 in prevention of acute lymphoblastic leukemia tumor cells. Advanced Pharmaceutical Bulletin, 9(3), 470-480. https://doi.org/10.15171/apb.2019.056 - PubMed
  101. Nelson, A. C., Lyons, T. R., Young, C. D., Hansen, K. C., Anderson, S. M., & Holt, J. T. (2010). AKT regulates BRCA1 stability in response to hormone signaling. Molecular and Cellular Endocrinology, 319(1-2), 129-142. - PubMed
  102. Obata, M., Imamura, E., Yoshida, Y., Goto, J., Kishibe, K., Yasuda, A., & Ogawa, K. (2001). Resistance of primary cultured mouse hepatic tumor cells to cellular senescence despite expression of p16Ink4a, p19Arf, p53, and p21Waf1/Cip1. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 32(1), 9-18. - PubMed
  103. Pal, S., Kozono, D., Yang, X., Fendler, W., Fitts, W., Ni, J., Alberta, J. A., Zhao, J., Liu, K. X., Bian, J., Truffaux, N., Weiss, W. A., Resnick, A. C., Bandopadhayay, P., Ligon, K. L., DuBois, S. G., Mueller, S., Chowdhury, D., & Haas-Kogan, D. A. (2018). Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Research, 78(14), 4007-4021. https://doi.org/10.1158/0008-5472.can-17-3691 - PubMed
  104. Pang, L. Y., Scott, M., Hayward, R. L., Mohammed, H., Whitelaw, C. B. A., Smith, G. C., & Hupp, T. R. (2011). p21WAF1 is component of a positive feedback loop that maintains the p53 transcriptional program. Cell Cycle, 10(6), 932-950. - PubMed
  105. Park, J. H., Jung, K. H., Kim, S. J., Fang, Z., Yan, H. H., Son, M. K., Kim, J., Kang, Y. W., Lee, J. E., Han, B., Lim, J. H., & Hong, S. S. (2017). Radiosensitization of the PI3K inhibitor HS-173 through reduction of DNA damage repair in pancreatic cancer. Oncotarget, 8(68), 112893-112906. https://doi.org/10.18632/oncotarget.22850 - PubMed
  106. Paull, T. T. (2015). Mechanisms of ATM activation. Annual Review of Biochemistry, 84, 711-738. - PubMed
  107. Pearl, L. H., & Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 75, 271-294. https://doi.org/10.1146/annurev.biochem.75.103004.142738 - PubMed
  108. Pedersen, P. L., Mathupala, S., Rempel, A., Geschwind, J. F., & Ko, Y. H. (2002). Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochimica et Biophysica Acta/General Subjects, 1555(1-3), 14-20. https://doi.org/10.1016/s0005-2728(02)00248-7 - PubMed
  109. Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633-4646. https://doi.org/10.1038/sj.onc.1209597 - PubMed
  110. Pons-Tostivint, E., Thibault, B., & Guillermet-Guibert, J. (2017). Targeting PI3K signaling in combination cancer therapy. Trends in Cancer, 3(6), 454-469. - PubMed
  111. Puc, J., Keniry, M., Li, H. S., Pandita, T. K., Choudhury, A. D., Memeo, L., Mansukhani, M., Murty, V. V., Gaciong, Z., Meek, S. E., Piwnica-Worms, H., Hibshoosh, H., & Parsons, R. (2005). Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell, 7(2), 193-204. - PubMed
  112. Qiu, S., & Huang, J. (2021). MRN complex is an essential effector of DNA damage repair. Journal of Zhejiang University-SCIENCE B, 22(1), 31-37. - PubMed
  113. Rodon, J., Dienstmann, R., Serra, V., & Tabernero, J. (2013). Development of PI3K inhibitors: Lessons learned from early clinical trials. Nature Reviews Clinical Oncology, 10(3), 143-153. https://doi.org/10.1038/nrclinonc.2013.10 - PubMed
  114. Sau, A., Lau, R., Cabrita, M. A., Nolan, E., Crooks, P. A., Visvader, J. E., & Pratt, M. A. (2016). Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell, 19(1), 52-65. https://doi.org/10.1016/j.stem.2016.05.003 - PubMed
  115. Schötz, U., Balzer, V., Brandt, F. W., Ziemann, F., Subtil, F., Rieckmann, T., Köcher, S., Engenhart-Cabillic, R., Dikomey, E., Wittig, A., & Arenz, A. (2020). Dual PI3K/mTOR inhibitor NVP-BEZ235 enhances radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines due to suppressed double-strand break (DSB) repair by non-homologous end joining. Cancers (Basel), 12(2), 467. https://doi.org/10.3390/cancers12020467 - PubMed
  116. Scripture, C. D., Figg, W. D., & Sparreboom, A. (2006). Peripheral neuropathy induced by paclitaxel: Recent insights and future perspectives. Current Neuropharmacology, 4(2), 165-172. https://doi.org/10.2174/157015906776359568 - PubMed
  117. Scully, R., Chen, J., Ochs, R. L., Keegan, K., Hoekstra, M., Feunteun, J., & Livingston, D. M. (1997). Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell, 90(3), 425-435. https://doi.org/10.1016/s0092-8674(00)80503-6 - PubMed
  118. Serej, F. A., Pourhassan-Moghaddam, M., Kalan, M. E., Mehdipour, A., Serej, Z. A., & Ebrahimi-Kalan, A. (2018). Targeting the PI3K/Akt/mTOR signaling pathway: Applications of nanotechnology. Crescent Journal of Medical and Biological Sciences. 5, 7-13. - PubMed
  119. Serrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, M., Cartwright, B., & Zou, Y. (2013). DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene, 32(19), 2452-2462. https://doi.org/10.1038/onc.2012.257 - PubMed
  120. Shaik, A., & Kirubakaran, S. (2020). Evolution of PIKK family kinase inhibitors: A new age cancer therapeutics. Front Biosci (Landmark Ed.), 25, 1510-1537. - PubMed
  121. Shen, C., Lancaster, C. S., Shi, B., Guo, H., Thimmaiah, P., & Bjornsti, M.-A. (2007). TOR signaling is a determinant of cell survival in response to DNA damage. Molecular and Cellular Biology, 27(20), 7007-7017. https://doi.org/10.1128/mcb.00290-07 - PubMed
  122. Shen, W. H., Balajee, A. S., Wang, J., Wu, H., Eng, C., Pandolfi, P. P., & Yin, Y. (2007). Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 128(1), 157-170. - PubMed
  123. Shiloh, Y. (2003). ATM and related protein kinases: Safeguarding genome integrity. Nature Reviews Cancer, 3(3), 155-168. https://doi.org/10.1038/nrc1011 - PubMed
  124. Sokka, M., Parkkinen, S., Pospiech, H., & Syväoja, J. E. (2010). Function of TopBP1 in genome stability. Sub-Cellular Biochemistry, 50, 119-141. https://doi.org/10.1007/978-90-481-3471-7_7 - PubMed
  125. Sokka, M., Parkkinen, S., Pospiech, H., & Syväoja, J. E. (2010). Function of TopBP1 in genome stability. Genome Stability and Human Diseases, 50, 119-141. - PubMed
  126. Spangle, J. M., Roberts, T. M., & Zhao, J. J. (2017). The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochimica et Biophysica Acta, Reviews on Cancer, 1868(1), 123-131. https://doi.org/10.1016/j.bbcan.2017.03.002 - PubMed
  127. Sugihara, T., Kaul, S. C., Kato, J.-Y, Reddel, R. R., Nomura, H., & Wadhwa, R. (2001). Pex19p dampens the p19ARF-p53-p21WAF1 tumor suppressor pathway. Journal of Biological Chemistry, 276(22), 18649-18652. - PubMed
  128. Symonds, H., Krall, L., Remington, L., Saenz-Robles, M., Lowe, S., Jacks, T., & Van Dyke, T. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell, 78(4), 703-711. - PubMed
  129. Takahashi, T., Shishido, T., Kinoshita, D., Watanabe, K., Toshima, T., Sugai, T., Narumi, T., Otaki, Y., Tamura, H., Nishiyama, S., Arimoto, T., Takahashi, H., Miyamoto, T., Watanabe, T., Woo, C. H., Abe, J., Takeishi, Y., Kubota, I., & Watanabe, M. (2019). Cardiac nuclear high-mobility group box 1 ameliorates pathological cardiac hypertrophy by inhibiting DNA damage response. JACC: Basic to Translational Science, 4(2), 234-247. - PubMed
  130. Tang, X., Li, A., Xie, C., Zhang, Y., Liu, X., Xie, Y., Wu, B., Zhou, S., Huang, X., Ma, Y., Cao, W., Xu, R., Shen, J., Huo, Z., Cai, S., Liang, Y., & Ma, D. (2020). The PI3K/mTOR dual inhibitor BEZ235 nanoparticles improve radiosensitization of hepatoma cells through apoptosis and regulation DNA repair pathway. Nanoscale Research Letters, 15(1), 63. https://doi.org/10.1186/s11671-020-3289-z - PubMed
  131. Tian, H., Gao, Z., Li, H., Zhang, B., Wang, G., Zhang, Q., Pei, D., & Zheng, J. (2015). DNA damage response-a double-edged sword in cancer prevention and cancer therapy. Cancer Letters, 358(1), 8-16. https://doi.org/10.1016/j.canlet.2014.12.038 - PubMed
  132. Toulany, M., Dittmann, K., Fehrenbacher, B., Schaller, M., Baumann, M., & Rodemann, H. P. (2008). PI3K-Akt signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 expression in human tumor cells in vitro. DNA Repair, 7(10), 1746-1756. - PubMed
  133. Tsujimoto, Y. (1998). Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes to Cells, 3(11), 697-707. https://doi.org/10.1046/j.1365-2443.1998.00223.x - PubMed
  134. Um, S. H., D'Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393-402. https://doi.org/10.1016/j.cmet.2006.05.003 - PubMed
  135. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. https://doi.org/10.1038/35042675 - PubMed
  136. Van der Vos, K. E., & Coffer, P. J. (2011). The extending network of FOXO transcriptional target genes. Antioxidants & Redox Signaling, 14(4), 579-592. https://doi.org/10.1089/ars.2010.3419 - PubMed
  137. Wang, G., Li, Y., Wang, P., Liang, H., Cui, M., Zhu, M., Guo, L., Su, Q., Sun, Y., McNutt, M. A., & Yin, Y. (2015). PTEN regulates RPA1 and protects DNA replication forks. Cell Research, 25(11), 1189-1204. - PubMed
  138. Wang, J., Li, W., Zhao, Y., Kang, D., Fu, W., Zheng, X., Pang, X., & Du, G. (2018). Members of FOX family could be drug targets of cancers. Pharmacology and Therapeutics, 181, 183-196. https://doi.org/10.1016/j.pharmthera.2017.08.003 - PubMed
  139. Wanigasooriya, K., Tyler, R., Barros-Silva, J. D., Sinha, Y., Ismail, T., & Beggs, A. D. (2020). Radiosensitising cancer using phosphatidylinositol-3-Kinase (PI3K), protein kinase B (AKT) or mammalian target of rapamycin (mTOR) inhibitors, Cancers (Basel) 12(5). https://doi.org/10.3390/cancers12051278 - PubMed
  140. Wu, J., Huen, M. S., Lu, L.-Y., Ye, L., Dou, Y., Ljungman, M., Chen, J., & Yu, X. (2009). Histone ubiquitination associates with BRCA1-dependent DNA damage response. Molecular and Cellular Biology, 29(3), 849-860. - PubMed
  141. Wu, J., Lu, L. Y., & Yu, X. (2010). The role of BRCA1 in DNA damage response. Protein & Cell, 1(2), 117-123. https://doi.org/10.1007/s13238-010-0010-5 - PubMed
  142. Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471-484. https://doi.org/10.1016/j.cell.2006.01.016 - PubMed
  143. Xia, C., Liu, C., He, Z., Cai, Y., & Chen, J. (2020). Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. Journal of Experimental and Clinical Cancer Research, 39(1), 127. https://doi.org/10.1186/s13046-020-01627-6 - PubMed
  144. Xu, N., Lao, Y., Zhang, Y., & Gillespie, D. A. (2012). Akt: A double-edged sword in cell proliferation and genome stability. Journal of Oncology, 2012, 951724. https://doi.org/10.1155/2012/951724 - PubMed
  145. Yang, L., Yang, G., Ding, Y., Dai, Y., Xu, S., Guo, Q., Xie, A., & Hu, G. (2018). Inhibition of PI3K/AKT signaling pathway radiosensitizes pancreatic cancer cells with ARID1A deficiency in vitro. Journal of Cancer, 9(5), 890-900. https://doi.org/10.7150/jca.21306 - PubMed
  146. Zhang, J., Willers, H., Feng, Z., Ghosh, J. C., Kim, S., Weaver, D. T., Chung, J. H., Powell, S. N., & Xia, F. (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Molecular and Cellular Biology, 24(2), 708-718. - PubMed
  147. Zhang, P., Chen, Z., Ning, K., Jin, J., & Han, X. (2017). Inhibition of B7-H3 reverses oxaliplatin resistance in human colorectal cancer cells. Biochemical and Biophysical Research Communications, 490(3), 1132-1138. - PubMed
  148. Zhang, Q., Yan, H. B., Wang, J., Cui, S. J., Wang, X. Q., Jiang, Y. H., Feng, L., Yang, P. Y., & Liu, F. (2016). Chromatin remodeling gene AT-rich interactive domain-containing protein 1A suppresses gastric cancer cell proliferation by targeting PIK3CA and PDK1. Oncotarget, 7(29), 46127-46141. https://doi.org/10.18632/oncotarget.10060 - PubMed
  149. Zhang, Y., Cong, L., He, J., Wang, Y., Zou, Y., Yang, Z., Hu, Y., Zhang, S., & He, X. (2018). Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim Biophys Sin (Shanghai), 50(6), 567-578. https://doi.org/10.1093/abbs/gmy046 - PubMed
  150. Zhang, Y., Xie, C., Li, A., Liu, X., Xing, Y., Shen, J., Huo, Z., Zhou, S., Liu, X., Xie, Y., Cao, W., Ma, Y., Xu, R., Cai, S., Tang, X., & Ma, D. (2019). PKI-587 enhances chemosensitivity of oxaliplatin in hepatocellular carcinoma through suppressing DNA damage repair pathway (NHEJ and HR) and PI3K/AKT/mTOR pathway. American Journal of Translational Research, 11(8), 5134-5149. - PubMed
  151. Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300(5625), 1542-1548. https://doi.org/10.1126/science.1083430 - PubMed

Publication Types