Display options
Share it on

Acta Crystallogr F Struct Biol Commun. 2021 Oct 01;77:356-363. doi: 10.1107/S2053230X21008967. Epub 2021 Sep 21.

Microcrystal preparation for serial femtosecond X-ray crystallography of bacterial copper amine oxidase.

Acta crystallographica. Section F, Structural biology communications

Takeshi Murakawa, Mamoru Suzuki, Toshi Arima, Michihiro Sugahara, Tomoyuki Tanaka, Rie Tanaka, So Iwata, Eriko Nango, Kensuke Tono, Hideyuki Hayashi, Kenji Fukui, Takato Yano, Katsuyuki Tanizawa, Toshihide Okajima

Affiliations

  1. Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
  2. Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
  3. SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
  4. Department of Chemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
  5. Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

PMID: 34605440 PMCID: PMC8488853 DOI: 10.1107/S2053230X21008967

Abstract

Recent advances in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers have paved the way for determining radiation-damage-free protein structures under nonfreezing conditions. However, the large-scale preparation of high-quality microcrystals of uniform size is a prerequisite for SFX, and this has been a barrier to its widespread application. Here, a convenient method for preparing high-quality microcrystals of a bacterial quinoprotein enzyme, copper amine oxidase from Arthrobacter globiformis, is reported. The method consists of the mechanical crushing of large crystals (5-15 mm

Keywords: X-ray free-electron lasers; copper amine oxidase; microcrystals; radiation-damage-free protein structure; serial femtosecond X-ray crystallography

References

  1. J Synchrotron Radiat. 2015 May;22(3):571-6 - PubMed
  2. Acta Crystallogr A Found Adv. 2019 Sep 1;75(Pt 5):694-704 - PubMed
  3. J Appl Crystallogr. 2016 Mar 29;49(Pt 2):680-689 - PubMed
  4. Nat Struct Biol. 2002 Aug;9(8):591-6 - PubMed
  5. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  6. Nature. 2017 Mar 2;543(7643):131-135 - PubMed
  7. J Am Chem Soc. 2003 Jan 29;125(4):1041-55 - PubMed
  8. J Synchrotron Radiat. 2015 May;22(3):532-7 - PubMed
  9. Nat Methods. 2014 Jul;11(7):734-6 - PubMed
  10. Nature. 2000 Aug 17;406(6797):752-7 - PubMed
  11. J Appl Crystallogr. 2014 May 29;47(Pt 3):1118-1131 - PubMed
  12. Nat Methods. 2015 Jan;12(1):61-3 - PubMed
  13. Science. 2014 Dec 5;346(6214):1242-6 - PubMed
  14. J Appl Crystallogr. 2016 Apr 18;49(Pt 3):1035-1041 - PubMed
  15. Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2519-25 - PubMed
  16. FEBS Lett. 1994 Sep 12;351(3):360-4 - PubMed
  17. BMC Biol. 2018 May 31;16(1):59 - PubMed
  18. Acta Crystallogr D Biol Crystallogr. 2012 May;68(Pt 5):564-77 - PubMed
  19. Biochemistry. 2006 Apr 4;45(13):4105-20 - PubMed
  20. Nature. 2011 Feb 3;470(7332):73-7 - PubMed
  21. IUCrJ. 2018 Jan 01;5(Pt 1):22-31 - PubMed
  22. J Appl Crystallogr. 2019 Oct 17;52(Pt 6):1280-1288 - PubMed
  23. Science. 2016 Dec 23;354(6319):1552-1557 - PubMed
  24. Proc Natl Acad Sci U S A. 2020 May 19;117(20):10818-10824 - PubMed
  25. Opt Express. 2015 Nov 2;23(22):28459-70 - PubMed
  26. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  27. Acta Crystallogr D Biol Crystallogr. 2013 Dec;69(Pt 12):2483-94 - PubMed
  28. Science. 2015 Oct 23;350(6259):445-50 - PubMed
  29. Nature. 2017 Jan 12;541(7636):242-246 - PubMed
  30. Rev Sci Instrum. 2014 Mar;85(3):033110 - PubMed
  31. Sci Rep. 2017 Apr 6;7(1):703 - PubMed
  32. Science. 2016 May 6;352(6286):725-9 - PubMed

Publication Types

Grant support