Display options
Share it on

Eur J Trauma Emerg Surg. 2021 Oct 04; doi: 10.1007/s00068-021-01789-8. Epub 2021 Oct 04.

Complete hemispheric exposure vs. superior sagittal sinus sparing craniectomy: incidence of shear-bleeding and shunt-dependency.

European journal of trauma and emergency surgery : official publication of the European Trauma Society

Martin Vychopen, Matthias Schneider, Valeri Borger, Patrick Schuss, Charlotte Behning, Hartmut Vatter, Erdem Güresir

Affiliations

  1. Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany. [email protected].
  2. Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
  3. Department of Medical Biometry, Informatics and Epidemiology, Universität Bonn, Institut für Medizinische Biometrie, Informatik und Epidemiologie (IMBIE), Bonn, Germany.

PMID: 34605961 DOI: 10.1007/s00068-021-01789-8

Abstract

PURPOSE: Decompressive hemicraniectomy (DC) has been established as a standard therapeutical procedure for raised intracranial pressure. However, the size of the DC remains unspecified. The aim of this study was to analyze size related complications following DC.

METHODS: Between 2013 and 2019, 306 patients underwent DC for elevated intracranial pressure at author´s institution. Anteroposterior and craniocaudal DC size was measured according to the postoperative CT scans. Patients were divided into two groups with (1) exposed superior sagittal sinus (SE) and (2) without superior sagittal sinus exposure (SC). DC related complications e.g. shear-bleeding at the margins of craniectomy and secondary hydrocephalus were evaluated and compared.

RESULTS: Craniectomy size according to anteroposterior diameter and surface was larger in the SE group; 14.1 ± 1 cm vs. 13.7 ± 1.2 cm, p = 0.003, resp. 222.5 ± 40 cm

CONCLUSIONS: Complete hemispheric exposure in terms of DC with SE was associated with significantly lower levels of iatrogenic shear-bleedings compared to a SC-surgical regime. Although we did not find significant outcome difference, our findings suggest aggressive craniectomy regimes including SE to constitute the surgical treatment strategy of choice for malignant intracranial pressure.

© 2021. The Author(s).

Keywords: Decompressive hemicraniectomy; Shear-bleeding; Size

References

  1. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, Boutron C, Couvreur G, Rouanet F, Touzé E, Guillon B, Carpentier A, Yelnik A, George B, Payen D, Bousser MG. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007. https://doi.org/10.1161/STROKEAHA.107.485235 . - PubMed
  2. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D´Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011. https://doi.org/10.1056/NEJMoa1102077 . - PubMed
  3. Güresir E, Schuss P, Vatter H, Raabe A, Seifert V, Beck J. Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus. 2009. https://doi.org/10.3171/2009.3.FOCUS0954 . - PubMed
  4. Fung C, Murek M, Z’Graggen WJ, Krähenbühl AK, Gautschi OP, Schucht P, Gralla J, Schaller K, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Decompressive hemicraniectomy in patients with supratentorial intracerebral hemorrhage. Stroke. 2012. https://doi.org/10.1161/STROKEAHA.112.666537 . - PubMed
  5. Wagner S, Schnippering H, Aschoff A, Koziol JA, Schwab S, Steiner T. Suboptimum hemicraniectomy as a cause of additional cerebral lesions in patients with malignant infarction of the middle cerebral artery. J Neurosurg. 2001. https://doi.org/10.3171/jns.2001.94.5.0693 . - PubMed
  6. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J. Guidelines for the management of severe traumatic brain injury. Neurosurgery. 2017. https://doi.org/10.1227/NEU.0000000000001432 . - PubMed
  7. Kurland DB, Khaladj-Ghom A, Stokum JA, Carusillo B, Karimy JK, Gerzanich V, Sahuquillo J, Simard JM. Complications associated with decompressive craniectomy: a systematic review. Neurocrit Care. 2015. https://doi.org/10.1007/s12028-015-0144-7 . - PubMed
  8. Flint AC, Manley GT, Gean AD, Hemphill JC, Rosenthal G. Post-operative expansion of hemorrhagic contusions after unilateral decompressive hemicraniectomy in severe traumatic brain injury. J Neurotrauma. 2008. https://doi.org/10.1089/neu.2007.0442 . - PubMed
  9. Ho M-Y, Tseng W-L, Xiao F. Estimation of the craniectomy surface area by using postoperative images. Int J Biomed Imaging. 2018. https://doi.org/10.1155/2018/5237693 . - PubMed
  10. Güresir E, Vatter H, Schuss P, Oszvald A, Raabe A, Seifert V, Beck J. Rapid closure technique in decompressive craniectomy. J Neurosurg. 2011. https://doi.org/10.3171/2009.12.JNS091065 . - PubMed
  11. Hanko M, Soršák J, Snopko P, Opšenák R, Zeleňák K, Kolarovszki B. Incidence and risk factors of early postoperative complications in patients after decompressive craniectomy: a 5-year experience. Eur J Trauma Emerg Surg. 2020. https://doi.org/10.1007/s00068-020-01367-4 . - PubMed
  12. Gao CP, Ang BT. Biomechanical modeling of decompressive craniectomy in traumatic brain injury. Acta Neurochir Suppl. 2008. https://doi.org/10.1007/978-3-211-85578-2_52 . - PubMed
  13. Sedney CL, Julien T, Manon J, Wilson A. The effect of craniectomy size on mortality, outcome, and complications after decompressive craniectomy at a rural trauma center. J Neurosci Rural Pract. 2014. https://doi.org/10.4103/0976-3147.133555 . - PubMed
  14. Jiang JY, Xu W, Li WP, Xu WH, Zhang J, Bao YH, Ying YH, Luo QZ. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005. https://doi.org/10.1089/neu.2005.22.623 . - PubMed
  15. De Bonis P, Pompucci A, Mangiola A, Rigante L, Anile C. Post-traumatic hydrocephalus after decompressive craniectomy: an underestimated risk factor. J Neurotrauma. 2010. https://doi.org/10.1089/neu.2010.1425 . - PubMed
  16. Sturiale CL, De Bonis P, Rigante L, Calandrelli R, D’Arrigo S, Pompucci A, Mangiola A, D’Apolito G, Colosimo C, Anile C. Do traumatic brain contusions increase in size after decompressive craniectomy? J Neurotrauma. 2012. https://doi.org/10.1089/neu.2012.2556 . - PubMed
  17. Reid P, Say I, Shah S, Tolia S, Musku S, Prestigiacomo C, Gandhi CD. Effect of bone flap surface area on outcomes in decompressive hemicraniectomy for traumatic brain injury. World Neurosurg. 2018. https://doi.org/10.1016/j.wneu.2018.08.005 . - PubMed
  18. Goedemans T, Verbaan D, Coert BA, Kerklaan BJ, van den Berg R, Coutinho JM, van Middelaar T, Nederkoorn PJ, Vandertop WP, van den Munckhof P. Neurologic outcome after decompressive craniectomy: predictors of outcome in different pathologic conditions. World Neurosurg. 2017. https://doi.org/10.1016/j.wneu.2017.06.069 . - PubMed
  19. Cepeda S, Castaño-León AM, Munarriz PM, Paredes I, Panero I, Eiriz C, Gómez PA, Lagares A. Effect of decompressive craniectomy in the postoperative expansion of traumatic intracerebral hemorrhage: a propensity score-based analysis. J Neurosurg. 2019. https://doi.org/10.3171/2019.2.JNS182025 . - PubMed
  20. Fattahian R, Bagheri SR, Sadeghi M. Development of posttraumatic hydrocephalus requiring ventriculoperitoneal shunt after decompressive craniectomy for traumatic brain injury: a systematic review and meta-analysis of retrospective studies. Med Arch. 2018. https://doi.org/10.5455/medarh.2018.72.214-219 . - PubMed
  21. Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006. https://doi.org/10.3171/jns.2006.104.4.469 . - PubMed
  22. Akins PT, Guppy KH. Are hygromas and hydrocephalus after decompressive craniectomy caused by impaired brain pulsatility, cerebrospinal fluid hydrodynamics, and glymphatic drainage? Literature overview and illustrative cases. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2019.07.041 . - PubMed
  23. Waziri A, Fusco D, Mayer SA, McKhann GM, Connolly ES. Postoperative hydrocephalus in patients undergoing decompressive hemicraniectomy for ischemic or hemorrhagic stroke. Neurosurgery. 2007. https://doi.org/10.1227/01.NEU.0000290894.85072.37 . - PubMed
  24. Yang X-J, Hong G-L, Su S-B, Yang S-Y (2003) Complications induced by decompressive craniectomies after traumatic brain injury. Chin J Traumatol. 2003. PMID: 12659705. - PubMed
  25. Lee MH, Yang JT, Weng HH, Cheng YK, Lin MH, Su CH, Chang CM, Wang TC. Hydrocephalus following decompressive craniectomy for malignant middle cerebral artery infarction. Clin Neurol Neurosurg. 2011. https://doi.org/10.1016/j.clineuro.2011.11.027 . - PubMed
  26. Moussa WMM, Khedr W. Decompressive craniectomy and expansive duraplasty with evacuation of hypertensive intracerebral hematoma, a randomized controlled trial. Neurosurg Rev. 2017. https://doi.org/10.1007/s10143-016-0743-6 . - PubMed
  27. Yamada S, Nakase H, Park Y-S, Nishimura F, Nakagawa I. Discriminant analysis prediction of the need for ventriculoperitoneal shunt after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2012. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.11.01 . - PubMed

Publication Types