Display options
Share it on

J Immunother Cancer. 2021 Sep;9(9). doi: 10.1136/jitc-2021-002754.

Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma.

Journal for immunotherapy of cancer

Eva Bräunlein, Gaia Lupoli, Franziska Füchsl, Esam T Abualrous, Niklas de Andrade Krätzig, Dario Gosmann, Lukas Wietbrock, Sebastian Lange, Thomas Engleitner, Huan Lan, Stefan Audehm, Manuel Effenberger, Melanie Boxberg, Katja Steiger, Yinshui Chang, Kai Yu, Cigdem Atay, Florian Bassermann, Wilko Weichert, Dirk H Busch, Roland Rad, Christian Freund, Iris Antes, Angela M Krackhardt

Affiliations

  1. Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  2. Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
  3. Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  4. Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  5. TUM School of Life Sciences and Center for Integrated Protein Science Munich, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  6. Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  7. Institute for Medical Microbiology Immunology and Hygiene, Technische Universität München, München, Germany.
  8. Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  9. MRI-TUM-Biobank at the Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  10. Core Facility Experimental Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.
  11. German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
  12. Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany [email protected].

PMID: 34518289 PMCID: PMC8438848 DOI: 10.1136/jitc-2021-002754

Abstract

BACKGROUND: Neoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation.

METHODS: Three neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient's immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient's TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing.

RESULTS: Selected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation.

CONCLUSIONS: We performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords: CD8-positive T-lymphocytes; adaptive immunity; adoptive; antigens; immunologic; immunotherapy; neoplasm; receptors

Conflict of interest statement

Competing interests: No, there are no competing interests.

References

  1. Clin Cancer Res. 2018 Nov 1;24(21):5357-5367 - PubMed
  2. Mol Syst Biol. 2011 Sep 27;7:533 - PubMed
  3. Science. 2015 Dec 11;350(6266):1387-90 - PubMed
  4. J Exp Med. 2018 Jan 2;215(1):141-157 - PubMed
  5. Front Immunol. 2019 Jun 28;10:1485 - PubMed
  6. J Immunol. 2014 Nov 1;193(9):4704-11 - PubMed
  7. Nature. 2017 Jul 13;547(7662):222-226 - PubMed
  8. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6973-8 - PubMed
  9. Cancer Res. 2016 Jul 15;76(14):4113-23 - PubMed
  10. Nat Rev Immunol. 2019 Jun;19(6):398-410 - PubMed
  11. N Engl J Med. 2016 Dec 8;375(23):2255-2262 - PubMed
  12. Clin Cancer Res. 2014 Jul 1;20(13):3401-10 - PubMed
  13. Cancer Immunol Immunother. 2020 May;69(5):859-865 - PubMed
  14. Blood. 2011 Feb 10;117(6):1888-98 - PubMed
  15. Nat Commun. 2016 Nov 21;7:13404 - PubMed
  16. Leukemia. 2014 Dec;28(12):2355-66 - PubMed
  17. J Immunol. 2004 Dec 15;173(12):7647-53 - PubMed
  18. Cancer Cell. 2015 Apr 13;27(4):450-61 - PubMed
  19. J Mol Biol. 2005 Mar 11;346(5):1367-79 - PubMed
  20. Nat Immunol. 2020 Apr;21(4):434-441 - PubMed
  21. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  22. Nature. 2017 Jul 13;547(7662):217-221 - PubMed
  23. Nat Commun. 2021 Jun 7;12(1):3346 - PubMed
  24. JCI Insight. 2019 Jun 20;5: - PubMed
  25. Nature. 2017 Nov 23;551(7681):517-520 - PubMed
  26. J Exp Med. 2007 Sep 3;204(9):2015-21 - PubMed
  27. J Exp Med. 1996 Aug 1;184(2):485-92 - PubMed
  28. Oncoimmunology. 2019 Feb 6;8(4):e1568813 - PubMed
  29. Cancer Discov. 2018 Nov;8(11):1366-1375 - PubMed
  30. Protein Sci. 2007 Jul;16(7):1294-307 - PubMed
  31. JCI Insight. 2020 Sep 3;5(17): - PubMed
  32. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5 - PubMed
  33. Acta Crystallogr D Biol Crystallogr. 2011 May;67(Pt 5):447-54 - PubMed
  34. JAMA Oncol. 2020 Apr 1;6(4):519-527 - PubMed
  35. Nat Genet. 2019 Feb;51(2):202-206 - PubMed
  36. Science. 2020 Feb 28;367(6481): - PubMed

Publication Types