Display options
Share it on

Mucosal Immunol. 2021 Sep 21; doi: 10.1038/s41385-021-00455-x. Epub 2021 Sep 21.

Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming.

Mucosal immunology

Alba Angelina, Mario Pérez-Diego, Jacobo López-Abente, Beate Rückert, Ivan Nombela, Mübeccel Akdis, Mar Martín-Fontecha, Cezmi Akdis, Oscar Palomares

Affiliations

  1. Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain.
  2. Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
  3. Department of Organic Chemistry, School of Optics and Optometry, Complutense University of Madrid, Madrid, Spain.
  4. Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain. [email protected].

PMID: 34548620 DOI: 10.1038/s41385-021-00455-x

Abstract

The generation of functional regulatory T cells (Tregs) is essential to keep tissue homeostasis and restore healthy immune responses in many biological and inflammatory contexts. Cannabinoids have been pointed out as potential therapeutic tools for several diseases. Dendritic cells (DCs) express the endocannabinoid system, including the cannabinoid receptors CB1 and CB2. However, how cannabinoids might regulate functional properties of DCs is not completely understood. We uncover that the triggering of cannabinoid receptors promote human tolerogenic DCs that are able to prime functional FOXP3

© 2021. The Author(s).

References

  1. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020). - PubMed
  2. Lucca, L. E. & Dominguez-Villar, M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat. Rev. Immunol.20, 680–693 (2020). - PubMed
  3. Wing, J. B., Tay, C. & Sakaguchi, S. Control of regulatory T cells by co-signal molecules. Adv. Exp. Med. Biol. 1189, 179–210 (2019). - PubMed
  4. Palomares, O., Akdis, M., Martin-Fontecha, M. & Akdis, C. A. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol. Rev. 278, 219–236 (2017). - PubMed
  5. Abbas, A. K. et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 14, 307–308 (2013). - PubMed
  6. Kitagawa, Y. & Sakaguchi, S. Molecular control of regulatory T cell development and function. Curr. Opin. Immunol. 49, 64–70 (2017). - PubMed
  7. Plitas, G. & Rudensky, A. Y. Regulatory T cells: differentiation and function. Cancer Immunol. Res. 4, 721–725 (2016). - PubMed
  8. Rhodes, J. W., Tong, O., Harman, A. N. & Turville, S. G. Human dendritic cell subsets, ontogeny, and impact on HIV infection. Front. Immunol. 10, 1088 (2019). - PubMed
  9. Wculek, S. K., Khouili, S. C., Priego, E., Heras-Murillo, I. & Sancho, D. Metabolic control of dendritic cell functions: digesting information. Front. Immunol. 10, 775 (2019). - PubMed
  10. Benito-Villalvilla, C. et al. MV140, a sublingual polyvalent bacterial preparation to treat recurrent urinary tract infections, licenses human dendritic cells for generating Th1, Th17, and IL-10 responses via Syk and MyD88. Mucosal Immunol. 10, 924–935 (2017). - PubMed
  11. Benito-Villalvilla, C. et al. Alum impairs tolerogenic properties induced by allergoid-mannan conjugates inhibiting mTOR and metabolic reprogramming in human DCs. Allergy. 75, 648–659 (2019). - PubMed
  12. Hernandez-Torres, G. et al. Development of a fluorescent bodipy probe for visualization of the serotonin 5-HT1A receptor in native cells of the immune system. Bioconjug Chem. 29, 2021–2027 (2018). - PubMed
  13. Lopez-Abente, J. et al. Omalizumab restores the ability of human plasmacytoid dendritic cells to induce Foxp3(+) Tregs. Eur. Respir J. 57, 2000751 (2020). - PubMed
  14. Busquets Garcia, A., Soria-Gomez, E., Bellocchio, L. & Marsicano, G. Cannabinoid receptor type-1: breaking the dogmas. F1000Res. 5, F1000 (2016). - PubMed
  15. Velasco, G., Sanchez, C. & Guzman, M. Towards the use of cannabinoids as antitumour agents. Nat. Rev. Cancer 12, 436–444 (2012). - PubMed
  16. Muller, C., Morales, P. & Reggio, P. H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 11, 487 (2018). - PubMed
  17. Irving, A. et al. Cannabinoid receptor-related orphan G protein-coupled receptors. Adv. Pharm. 80, 223–247 (2017). - PubMed
  18. O’Sullivan, S. E. An update on PPAR activation by cannabinoids. Br. J. Pharm. 173, 1899–1910 (2016). - PubMed
  19. Pandey, R., Mousawy, K., Nagarkatti, M. & Nagarkatti, P. Endocannabinoids and immune regulation. Pharm. Res. 60, 85–92 (2009). - PubMed
  20. van Niekerk, G., Mabin, T. & Engelbrecht, A. M. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 27, 39–46 (2019). - PubMed
  21. Angelina, A., Perez-Diego, M., Lopez-Abente, J. & Palomares, O. The role of cannabinoids in allergic diseases. Int. Arch. Allergy Immunol. 181, 565–584 (2020). - PubMed
  22. Velasco, G., Sanchez, C. & Guzman, M. Anticancer mechanisms of cannabinoids. Curr. Oncol. 23, S23–S32 (2016). - PubMed
  23. Fernandez-Ruiz, J. The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid-based therapies to improve on the poor current therapeutic outcomes. Br. J. Pharm. 176, 1370–1383 (2019). - PubMed
  24. Matias, I. et al. Presence and regulation of the endocannabinoid system in human dendritic cells. Eur. J. Biochem. 269, 3771–3778 (2002). - PubMed
  25. Svensson, M., Chen, P. & Hammarfjord, O. Dendritic cell regulation by cannabinoid-based drugs. Pharm. (Basel) 3, 2733–2750 (2010). - PubMed
  26. Martin-Fontecha, M. et al. The expression of cannabinoid receptor 1 is significantly increased in atopic patients. J. Allergy Clin. Immunol. 133, 926–929 e922 (2014). - PubMed
  27. Pearce, E. J. & Everts, B. Dendritic cell metabolism. Nat. Rev. Immunol. 15, 18–29 (2015). - PubMed
  28. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016). - PubMed
  29. van Teijlingen Bakker, N. & Pearce, E. J. Cell-intrinsic metabolic regulation of mononuclear phagocyte activation: findings from the tip of the iceberg. Immunol. Rev. 295, 54–67 (2020). - PubMed
  30. O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013). - PubMed
  31. Jones, R. G. & Pearce, E. J. MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells. Immunity 46, 730–742 (2017). - PubMed
  32. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011). - PubMed
  33. Ghislat, G. & Lawrence, T. Autophagy in dendritic cells. Cell Mol. Immunol. 15, 944–952 (2018). - PubMed
  34. Niven, J. et al. Macroautophagy in dendritic cells controls the homeostasis and stability of regulatory T cells. Cell Rep. 28, 21–29 e26 (2019). - PubMed
  35. Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016). - PubMed
  36. Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009). - PubMed
  37. Martin-Fontecha, M. et al. A fluorescent probe to unravel functional features of cannabinoid receptor CB1 in human blood and tonsil immune system cells. Bioconjug Chem. 29, 382–389 (2018). - PubMed
  38. Fakhfouri, G. et al. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-gamma pathway. Neuropharmacology 63, 653–666 (2012). - PubMed
  39. Downer, E. J., Clifford, E., Amu, S., Fallon, P. G. & Moynagh, P. N. The synthetic cannabinoid R(+)WIN55,212-2 augments interferon-beta expression via peroxisome proliferator-activated receptor-alpha. J. Biol. Chem. 287, 25440–25453 (2012). - PubMed
  40. Fucikova, J., Palova-Jelinkova, L., Bartunkova, J. & Spisek, R. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications. Front. Immunol. 10, 2393 (2019). - PubMed
  41. Hilligan, K. L. & Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol. Immunol. 17, 587–599 (2020). - PubMed
  42. Roth, M. D., Castaneda, J. T. & Kiertscher, S. M. Exposure to Delta9-Tetrahydrocannabinol impairs the differentiation of human monocyte-derived dendritic cells and their capacity for T cell Activation. J. Neuroimmune Pharm. 10, 333–343 (2015). - PubMed
  43. Henriquez, J. E., Crawford, R. B. & Kaminski, N. E. Suppression of CpG-ODN-mediated IFNalpha and TNFalpha response in human plasmacytoid dendritic cells (pDC) by cannabinoid receptor 2 (CB2)-specific agonists. Toxicol. Appl. Pharm. 369, 82–89 (2019). - PubMed
  44. Henriquez, J. E. et al. Delta9-Tetrahydrocannabinol suppresses secretion of IFNalpha by plasmacytoid dendritic cells from healthy and HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 75, 588–596 (2017). - PubMed
  45. Lowin, T., Pongratz, G. & Straub, R. H. The synthetic cannabinoid WIN55,212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB2, TRPV1, TRPA1 and yet unidentified receptor targets. J. Inflamm. (Lond.) 13, 15 (2016). - PubMed
  46. Eisenstein, T. K. & Meissler, J. J. Effects of cannabinoids on T-cell function and resistance to infection. J. Neuroimmune Pharm. 10, 204–216 (2015). - PubMed
  47. Robinson, R. H. et al. A CB2-Selective cannabinoid suppresses T-Cell activities and increases Tregs and IL-10. J. Neuroimmune Pharm. 10, 318–332 (2015). - PubMed
  48. de Lago, E., Moreno-Martet, M., Cabranes, A., Ramos, J. A. & Fernandez-Ruiz, J. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology 62, 2299–2308 (2012). - PubMed
  49. Fitzpatrick, J. M. et al. MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by Delta(9)-tetrahydrocannabinol and cannabidiol in human macrophages. J. Neuroimmunol. 343, 577217 (2020). - PubMed
  50. Rajan, T. S. et al. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 112, 104–115 (2016). - PubMed
  51. McCoy, K. L. Interaction between cannabinoid system and Toll-Like receptors controls inflammation. Mediators Inflamm. 2016, 5831315 (2016). - PubMed
  52. Dando, I. et al. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis. 4, e664 (2013). - PubMed
  53. Vara, D. et al. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ. 18, 1099–1111 (2011). - PubMed
  54. Tomic, S. et al. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 146, 13–28 (2017). - PubMed
  55. Gonzalez, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: The Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020). - PubMed
  56. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017). - PubMed
  57. Kim, J. & Guan, K. L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019). - PubMed
  58. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018). - PubMed
  59. Malinarich, F. et al. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J. Immunol. 194, 5174–5186 (2015). - PubMed
  60. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014). - PubMed
  61. Campbell, N. K., Fitzgerald, H. K., Fletcher, J. M. & Dunne, A. Plant-derived polyphenols modulate human dendritic cell metabolism and immune function via AMPK-dependent induction of heme oxygenase-1. Front Immunol. 10, 345 (2019). - PubMed
  62. Sim, W. J., Ahl, P. J. & Connolly, J. E. Metabolism is central to tolerogenic dendritic cell function. Mediators Inflamm. 2016, 2636701 (2016). - PubMed
  63. Ferreira, G. B. et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 10, 711–725 (2015). - PubMed
  64. Kim, Y. S. et al. PPAR-alpha activation mediates innate host defense through induction of TFEB and lipid catabolism. J. Immunol. 198, 3283–3295 (2017). - PubMed
  65. Cecconi, M., Evans, L., Levy, M. & Rhodes, A. Sepsis and septic shock. Lancet 392, 75–87 (2018). - PubMed
  66. Jiao, M. et al. Peroxisome proliferator-activated receptor alpha activation attenuates the inflammatory response to protect the liver from acute failure by promoting the autophagy pathway. Cell Death Dis. 5, e1397 (2014). - PubMed
  67. Okeke, E. B., Okwor, I., Mou, Z., Jia, P. & Uzonna, J. E. CD4+CD25+ regulatory T cells attenuate lipopolysaccharide-induced systemic inflammatory responses and promotes survival in murine Escherichia coli infection. Shock 40, 65–73 (2013). - PubMed
  68. Okeke, E. B., Okwor, I. & Uzonna, J. E. Regulatory T cells restrain CD4+ T cells from causing unregulated immune activation and hypersensitivity to lipopolysaccharide challenge. J. Immunol. 193, 655–662 (2014). - PubMed
  69. Burks, A. W., Sampson, H. A., Plaut, M., Lack, G. & Akdis, C. A. Treatment for food allergy. J. Allergy Clin. Immunol. 141, 1–9 (2018). - PubMed
  70. Dunlop, J. H. Oral immunotherapy for treatment of peanut allergy. J. Investig. Med. 68, 1152–1155 (2020). - PubMed
  71. Sampson, H. A. et al. Mechanisms of food allergy. J. Allergy Clin. Immunol. 141, 11–19 (2018). - PubMed

Publication Types