Display options
Share it on

Mol Neurobiol. 2021 Dec;58(12):6697-6711. doi: 10.1007/s12035-021-02558-9. Epub 2021 Oct 05.

α-Synuclein Induces the GSK-3-Mediated Phosphorylation and Degradation of NURR1 and Loss of Dopaminergic Hallmarks.

Molecular neurobiology

Ángel Juan García-Yagüe, Isabel Lastres-Becker, Leonidas Stefanis, Demetrios K Vassilatis, Antonio Cuadrado

Affiliations

  1. Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain.
  2. Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
  3. Instituto de Investigación Sanitaria La Paz (IdiPaz), C/ Arturo Duperier, 4, 28029, Madrid, Spain.
  4. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid, Spain.
  5. 1St Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
  6. National and Kapodistrian University of Athens, Athens, Greece.
  7. Center of Clinical Research, Biomedical Research Foundation, Experimental Surgery and Translational Research, Academy of Athens, Athens, Greece.
  8. Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain. [email protected].
  9. Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain. [email protected].
  10. Instituto de Investigación Sanitaria La Paz (IdiPaz), C/ Arturo Duperier, 4, 28029, Madrid, Spain. [email protected].
  11. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid, Spain. [email protected].

PMID: 34609698 PMCID: PMC8639559 DOI: 10.1007/s12035-021-02558-9

Abstract

In Parkinson's disease, the dysfunction of the dopaminergic nigrostriatal tract involves the loss of function of dopaminergic neurons of the substantia nigra pars compacta followed by death of these neurons. The functional recovery of these neurons requires a deep knowledge of the molecules that maintain the dopaminergic phenotype during adulthood and the mechanisms that subvert their activity. Previous studies have shown that transcription factor NURR1, involved in differentiation and maintenance of the dopaminergic phenotype, is downregulated by α-synuclein (α-SYN). In this study, we provide a mechanistic explanation to this finding by connecting α-SYN-induced activation of glycogen synthase kinase-3 (GSK-3) with NURR1 phosphorylation followed by proteasomal degradation. The use of sequential deletion mutants and single point mutants of NURR1 allowed the identification of a domain comprising amino acids 123-PSSPPTPSTPS-134 that is targeted by GSK-3 and leads to subsequent ubiquitination and proteasome degradation. This study provides a detailed analysis of the regulation of NURR1 stability by phosphorylation in synucleinopathies such as Parkinson's disease.

© 2021. The Author(s).

Keywords: Dopaminergic neurons; Dopaminergic phenotype; Parkinson’s disease; Transcription

References

  1. Development. 1999 Sep;126(18):4017-26 - PubMed
  2. Mol Med Rep. 2014 Jun;9(6):2043-50 - PubMed
  3. Brain Res. 1985 May 27;335(1):194-9 - PubMed
  4. Front Mol Neurosci. 2020 May 12;13:64 - PubMed
  5. Mol Cell Neurosci. 2001 Dec;18(6):649-63 - PubMed
  6. Pharmacol Res. 2015 Jul;97:16-26 - PubMed
  7. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11960-5 - PubMed
  8. Nat Cell Biol. 2002 Feb;4(2):160-4 - PubMed
  9. Brain. 2019 Nov 1;142(11):3565-3579 - PubMed
  10. PLoS One. 2010 Jul 28;5(7):e11838 - PubMed
  11. Parkinsonism Relat Disord. 2015 Aug;21(8):981-6 - PubMed
  12. Brain Res Mol Brain Res. 1999 Dec 10;74(1-2):1-14 - PubMed
  13. Neurotoxicology. 2006 Dec;27(6):1003-6 - PubMed
  14. Nat Rev Neurosci. 2010 Aug;11(8):539-51 - PubMed
  15. J Biol Chem. 2013 Feb 22;288(8):5506-17 - PubMed
  16. Neurology. 2002 Mar 26;58(6):881-4 - PubMed
  17. Autophagy. 2016 Oct 2;12(10):1902-1916 - PubMed
  18. FEBS J. 2011 Dec;278(24):4895-904 - PubMed
  19. Glia. 2011 Dec;59(12):1850-63 - PubMed
  20. Neurochem Int. 2013 Nov;63(5):345-53 - PubMed
  21. Pharmacol Ther. 2012 Oct;136(1):8-22 - PubMed
  22. FASEB J. 2009 Sep;23(9):2820-30 - PubMed
  23. J Neurosci. 2012 Jul 4;32(27):9248-64 - PubMed
  24. J Vis Exp. 2019 Jun 2;(148): - PubMed
  25. BMC Neurosci. 2015 Oct 23;16:69 - PubMed
  26. J Neurochem. 2003 May;85(4):957-68 - PubMed
  27. Biochem Pharmacol. 2018 Jan;147:77-92 - PubMed
  28. FASEB J. 2004 Jul;18(10):1162-4 - PubMed
  29. Nat Genet. 2003 Jan;33(1):85-9 - PubMed
  30. Sci Transl Med. 2012 Dec 5;4(163):163ra156 - PubMed
  31. Ann Neurol. 2005 Dec;58(6):829-39 - PubMed
  32. PLoS One. 2013;8(2):e55999 - PubMed
  33. Science. 1997 Apr 11;276(5310):248-50 - PubMed
  34. J Neurosci. 2009 Dec 16;29(50):15923-32 - PubMed
  35. Cell Cycle. 2009 Dec 15;8(24):4032-9 - PubMed
  36. Neurology. 2008 Jan 1;70(1):43-9 - PubMed
  37. Nature. 2003 May 22;423(6938):435-9 - PubMed
  38. Neurosci Lett. 2007 Aug 16;423(2):118-22 - PubMed
  39. Int J Alzheimers Dis. 2011;2011:861072 - PubMed
  40. J Am Soc Nephrol. 2007 Apr;18(4):1130-9 - PubMed
  41. PLoS One. 2014 Apr 10;9(4):e94259 - PubMed
  42. FEBS Lett. 1997 Oct 27;416(3):307-11 - PubMed
  43. J Parkinsons Dis. 2011;1(1):19-33 - PubMed
  44. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11074-9 - PubMed
  45. J Neurochem. 2021 Mar;156(6):880-896 - PubMed
  46. Biochem J. 1993 Nov 15;296 ( Pt 1):15-9 - PubMed
  47. Nat Protoc. 2014 Sep;9(9):2135-46 - PubMed
  48. Cell Death Differ. 2015 May;22(5):838-51 - PubMed
  49. Brain. 2011 Aug;134(Pt 8):2302-11 - PubMed
  50. Nat Commun. 2014 Sep 03;5:4767 - PubMed
  51. Neurochem Int. 2016 Jul;97:117-23 - PubMed
  52. Nat Rev Neurol. 2013 Nov;9(11):629-36 - PubMed
  53. Mol Neurobiol. 2018 Feb;55(2):1607-1619 - PubMed
  54. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2874-9 - PubMed
  55. Front Pharmacol. 2020 Apr 23;11:356 - PubMed
  56. J Neurosci. 2010 May 19;30(20):6838-51 - PubMed
  57. J Neurochem. 2003 May;85(3):622-34 - PubMed
  58. Neuropharmacology. 2007 Jun;52(8):1678-84 - PubMed
  59. Biochem J. 2006 Feb 1;393(Pt 3):715-24 - PubMed
  60. Prog Neurobiol. 2005 Sep-Oct;77(1-2):128-38 - PubMed
  61. Stem Cells. 2009 Sep;27(9):2238-46 - PubMed
  62. Sci Rep. 2016 Mar 21;6:23527 - PubMed
  63. J Neurochem. 2001 Mar;76(5):1565-72 - PubMed
  64. FASEB J. 2002 Jun;16(8):869-71 - PubMed
  65. Hum Mol Genet. 2012 Jul 15;21(14):3173-92 - PubMed
  66. Redox Biol. 2020 Feb;30:101425 - PubMed
  67. Neurobiol Dis. 2021 Jun;153:105298 - PubMed
  68. Mech Ageing Dev. 2015 Jul;149:41-9 - PubMed
  69. J Neurochem. 2009 Jun;109(5):1348-62 - PubMed
  70. Exp Neurol. 1999 Oct;159(2):451-8 - PubMed
  71. J Neurochem. 2006 Jun;97(5):1403-11 - PubMed
  72. Mov Disord. 2010 Jan 30;25(2):228-31 - PubMed
  73. Exp Cell Res. 2003 Aug 15;288(2):324-34 - PubMed
  74. Glia. 2010 Apr;58(5):588-98 - PubMed
  75. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a009399 - PubMed
  76. J Neurosci. 2012 Nov 14;32(46):16071-3 - PubMed
  77. J Biol Chem. 2006 Oct 6;281(40):29739-52 - PubMed

Publication Types

Grant support