Display options
Share it on

Methods Mol Biol. 2022;2384:175-199. doi: 10.1007/978-1-0716-1759-5_11.

Fmoc Solid Phase Peptide Synthesis of Oxytocin and Analogues.

Methods in molecular biology (Clifton, N.J.)

Thomas Kremsmayr, Markus Muttenthaler

Affiliations

  1. Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria.
  2. Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria. [email protected].
  3. Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. [email protected].

PMID: 34550575 DOI: 10.1007/978-1-0716-1759-5_11

Abstract

Solid phase peptide synthesis is the most commonly used method for the production of peptides. In this chapter, we outline the standard operating procedures used in our laboratory to efficiently access oxytocin-like peptides. This includes detailed descriptions of equipment setup, reagent selection, peptide assembly on solid support, peptide side chain deprotection and cleavage from the solid support, oxidative folding, purification, and analysis.

© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: 9-fluorenylmethoxycarbonyl (Fmoc); Amino acid coupling; Fmoc-SPPS; Oxidative peptide folding; Solid phase peptide synthesis (SPPS); Synthetic oxytocin analogues

References

  1. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc 76(12):3115–3121. https://doi.org/10.1021/ja01641a004 - PubMed
  2. du Vigneaud V (1955) Trail of sulfur research: from insulin to oxytocin. Science 123(3205):967–974. https://doi.org/10.1126/science.123.3205.967 - PubMed
  3. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154. https://doi.org/10.1021/ja00897a025 - PubMed
  4. Merrifield RB (1985) Solid phase synthesis (Nobel lecture). Angew Chem Int Ed 24(10):799–810. https://doi.org/10.1002/anie.198507993 - PubMed
  5. Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92(19):5748–5749. https://doi.org/10.1021/ja00722a043 - PubMed
  6. Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37(22):3404–3409. https://doi.org/10.1021/jo00795a005 - PubMed
  7. Carpino LA (1973) New amino-protecting groups in organic synthesis. Acc Chem Res 6(6):191–198. https://doi.org/10.1021/ar50066a003 - PubMed
  8. Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ (1978) A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. Chem Biol Drug Des (13):537–539. https://doi.org/10.1039/C39780000537 - PubMed
  9. Chang C-D, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of N-α-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11(3):246–249. https://doi.org/10.1111/j.1399-3011.1978.tb02845.x - PubMed
  10. Jensen KJ, Tofteng AP, Pedersen SL (2013) Peptide synthesis and applications, vol 1047. Methods Mol. Biol., 2nd edn. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6 - PubMed
  11. Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 10(7):1067–1083. https://doi.org/10.1038/nprot.2015.061 - PubMed
  12. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x - PubMed
  13. Kirtikumar BJ, Katrina JW, Muttenthaler M (2020) Anhydrous hydrogen fluoride cleavage in Boc solid phase peptide synthesis. Methods Mol Biol 2103, 41–57 - PubMed
  14. Camarero JA, Adeva A, Muir TW (2000) 3-thiopropionic acid as a highly versatile multidetachable thioester resin linker. Lett Pept Sci 7(1):17–21. https://doi.org/10.1007/BF02443557 - PubMed
  15. Schnölzer M, Alewood PF, Jones A, Alewood D, Kent SBH, KENT SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Protein Res 40(3-4):180–193. https://doi.org/10.1111/j.1399-3011.1992.tb00291.x - PubMed
  16. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22(1):4–27. https://doi.org/10.1002/psc.2836 - PubMed
  17. Made V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. https://doi.org/10.3762/bjoc.10.118 - PubMed
  18. Fields CG, Lloyd DH, Macdonald RL, Otteson KM, Noble RL (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res 4(2):95–101 - PubMed
  19. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598. https://doi.org/10.1016/0003-2697(70)90146-6 - PubMed
  20. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117(1):147–157. https://doi.org/10.1016/0003-2697(81)90704-1 - PubMed
  21. Kaiser E, Bossinger CD, Colescott RL, Olsen DB (1980) Color test for terminal prolyl residues in the solid-phase synthesis of peptides. Anal Chim Acta 118(1):149–151. https://doi.org/10.1016/S0003-2670(01)93726-2 - PubMed
  22. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38(2):606–631. https://doi.org/10.1039/b701677h - PubMed
  23. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111(11):6557–6602. https://doi.org/10.1021/cr100048w - PubMed
  24. Dourtoglou V, Gross B, Lambropoulou V, Zioudrou C (1984) O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 1984(07):572–574. https://doi.org/10.1055/s-1984-30895 - PubMed
  25. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. an efficient peptide coupling additive. J Am Chem Soc 115(10):4397–4398. https://doi.org/10.1021/ja00063a082 - PubMed
  26. Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C, Lee Y, Foxman BM, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M (2002) The Uronium/Guanidinium peptide coupling reagents: finally the true Uronium salts. Angew Chem Int Ed 41(3):441–445. https://doi.org/10.1002/1521-3773(20020201)41:3<441::Aid-anie441>3.0.Co;2-n - PubMed
  27. Sabatino G, Mulinacci B, Alcaro MC, Chelli M, Rovero P, Papini AM (2002) Assessment of new 6-cl-HOBt based coupling reagents for peptide synthesis. Part 1: coupling efficiency study. Lett Pept Sci 9(2):119–123. https://doi.org/10.1007/bf02576873 - PubMed
  28. Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15(37):9394–9403. https://doi.org/10.1002/chem.200900614 - PubMed
  29. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256. https://doi.org/10.1038/nprot.2007.454 - PubMed
  30. Paradis-Bas M, Tulla-Puche J, Albericio F (2016) The road to the synthesis of "difficult peptides". Chem Soc Rev 45(3):631–654. https://doi.org/10.1039/c5cs00680e - PubMed
  31. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. Meth Enzymol 289:67–83. https://doi.org/10.1016/S0076-6879(97)89044-1 - PubMed
  32. Wan J, Mobli M, Brust A, Muttenthaler M, Andersson A, Ragnarsson L, Castro J, Vetter I, Huang JX, Nilsson M, Brierley SM, Cooper MA, Lewis RJ, Alewood PF (2017) Synthesis of multivalent [Lys8]-oxytocin dendrimers that inhibit visceral nociceptive responses. Aust J Chem 70(2):162. https://doi.org/10.1071/ch16407 - PubMed
  33. Wan J, Huang JX, Vetter I, Mobli M, Lawson J, Tae HS, Abraham N, Paul B, Cooper MA, Adams DJ, Lewis RJ, Alewood PF (2015) Alpha-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors. J Am Chem Soc 137(9):3209–3212. https://doi.org/10.1021/jacs.5b00244 - PubMed
  34. Isidro-Llobet A, Álvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109(6):2455–2504. https://doi.org/10.1021/cr800323s - PubMed
  35. Postma TM, Albericio F (2014) Disulfide formation strategies in peptide synthesis. Eur J Org Chem 2014(17):3519–3530. https://doi.org/10.1002/ejoc.201402149 - PubMed
  36. Jin A-H, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2019) Conotoxins: chemistry and biology. Chem Rev 119(21):11510–11549. https://doi.org/10.1021/acs.chemrev.9b00207 - PubMed
  37. Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2014) Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114(11):5815–5847. https://doi.org/10.1021/cr400401e - PubMed
  38. Muttenthaler M, Nevin ST, Grishin AA, Ngo ST, Choy PT, Daly NL, Hu S-H, Armishaw CJ, Wang C-IA, Lewis RJ, Martin JL, Noakes PG, Craik DJ, Adams DJ, Alewood PF (2010) Solving the α-Conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 132(10):3514–3522. https://doi.org/10.1021/ja910602h - PubMed
  39. Muttenthaler M, Andersson A, de Araujo AD, Dekan Z, Lewis RJ, Alewood PF (2010) Modulating oxytocin activity and plasma stability by disulfide bond engineering. J Med Chem 53(24):8585–8596. https://doi.org/10.1021/jm100989w - PubMed
  40. Conibear AC, Daly NL, Craik DJ (2012) Quantification of small cyclic disulfide-rich peptides. Biopolymers 98(6):518–524. https://doi.org/10.1002/bip.22121 - PubMed
  41. Moffatt F, Senkans P, Ricketts D (2000) Approaches towards the quantitative analysis of peptides and proteins by reversed-phase high-performance liquid chromatography in the absence of a pure reference sample. J Chromatogr A 891(2):235–242. https://doi.org/10.1016/S0021-9673(00)00620-8 - PubMed
  42. Buck MA, Olah TA, Weitzmann CJ, Cooperman BS (1989) Protein estimation by the product of integrated peak area and flow rate. Anal Biochem 182(2):295–299. https://doi.org/10.1016/0003-2697(89)90597-6 - PubMed
  43. McKnelly KJ, Sokol W, Nowick JS (2020) Anaphylaxis induced by peptide coupling agents: lessons learned from repeated exposure to HATU, HBTU, and HCTU. J Org Chem 85(3):1764–1768. https://doi.org/10.1021/acs.joc.9b03280 - PubMed
  44. Albericio F, Bofill JM, El-Faham A, Kates SA (1998) Use of onium salt-based coupling reagents in peptide synthesis. J Org Chem 63(26):9678–9683. https://doi.org/10.1021/jo980807y - PubMed
  45. Huang H, Rabenstein DL (1999) A cleavage cocktail for methionine-containing peptides. J Pept Res 53(5):548–553. https://doi.org/10.1034/j.1399-3011.1999.00059.x - PubMed
  46. Sole NA, Barany G (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphin a. J Org Chem 57(20):5399–5403. https://doi.org/10.1021/jo00046a022 - PubMed
  47. Albericio F, Kneib-Cordonier N, Biancalana S, Gera L, Masada RI, Hudson D, Barany G (1990) Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl)aminomethyl-3,5-dimethoxyphenoxy)-valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions. J Org Chem 55(12):3730–3743. https://doi.org/10.1021/jo00299a011 - PubMed
  48. Teixeira A, Benckhuijsen WE, PED K, ARPM V, Drijfhout JW (2002) The use of Dodt as a non-malodorous scavenger in Fmoc-based peptide synthesis. Protein Pept Lett 9(5):379–385. https://doi.org/10.2174/0929866023408481 - PubMed
  49. Gomez-Martinez P, Dessolin M, Guibé F, Albericio F (1999) Nα-Alloc temporary protection in solid-phase peptide synthesis. The use of amine–borane complexes as allyl group scavengers. J Chem Soc Perkin Trans 1(20):2871–2874. https://doi.org/10.1039/A906025A - PubMed
  50. Grieco P, Gitu PM, Hruby VJ (2001) Preparation of ‘side-chain-to-side-chain’ cyclic peptides by allyl and Alloc strategy: potential for library synthesis. J Pept Res 57(3):250–256. https://doi.org/10.1111/j.1399-3011.2001.00816.x - PubMed
  51. Maity SK, Jbara M, Laps S, Brik A (2016) Efficient palladium-assisted one-pot Deprotection of (Acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew Chem Int Ed 55(28):8108–8112. https://doi.org/10.1002/anie.201603169 - PubMed
  52. Wang P, Dong S, Shieh J-H, Peguero E, Hendrickson R, Moore MAS, Danishefsky SJ (2013) Erythropoietin derived by chemical synthesis. Science 342(6164):1357–1360. https://doi.org/10.1126/science.1245095 - PubMed
  53. Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39(12):1603–1606. https://doi.org/10.1016/S0040-4039(97)10828-0 - PubMed
  54. Galande AK, Weissleder R, Tung C-H (2005) An effective method of on-resin disulfide bond formation in peptides. J Comb Chem 7(2):174–177. https://doi.org/10.1021/cc049839r - PubMed
  55. Harris KM, Flemer S Jr, Hondal RJ (2007) Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J Pept Sci 13(2):81–93. https://doi.org/10.1002/psc.795 - PubMed
  56. Schroll AL, Hondal RJ, Flemer S Jr (2012) 2,2'-Dithiobis(5-nitropyridine) (DTNP) as an effective and gentle deprotectant for common cysteine protecting groups. J Pept Sci 18(1):1–9. https://doi.org/10.1002/psc.1403 - PubMed
  57. Aletras A, Barlos K, Gatos D, Koutsogianni S, Mamos P (1995) Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs. Int J Pept Protein Res 45(5):488–496. https://doi.org/10.1111/j.1399-3011.1995.tb01065.x - PubMed
  58. Rei M, Takahide K, Thomas KE, Matsueda Gary R (1981) 3-Nitro-2-Pyridinesulfenyl group for the protection and activation of the thiol function of cysteine. Chem Lett 10(6):737–740. https://doi.org/10.1246/cl.1981.737 - PubMed
  59. Albericio F, Andreu D, Giralt E, Navalpotro C, Pedroso E, Ponsati B, Rue-gayo M (1989) Use of the Npys thiol protection in solid phase peptide synthesis application to direct peptide-protein conjugation through cysteine residues. Int J Pept Protein Res 34(2):124–128. https://doi.org/10.1111/j.1399-3011.1989.tb01500.x - PubMed

Publication Types