Display options
Share it on

Methods Mol Biol. 2022;2384:153-174. doi: 10.1007/978-1-0716-1759-5_10.

The Current Status of Drug Discovery for the Oxytocin Receptor.

Methods in molecular biology (Clifton, N.J.)

Philippe E Nashar, Aidan A Whitfield, Jiri Mikusek, Tristan A Reekie

Affiliations

  1. Research School of Chemistry, Australian National University, Canberra, ACT, Australia.
  2. Research School of Chemistry, Australian National University, Canberra, ACT, Australia. [email protected].

PMID: 34550574 DOI: 10.1007/978-1-0716-1759-5_10

Abstract

The oxytocin receptor plays a significant role in peripheral regulation of parturition and lactation. Given this important role, multiple drug discovery programs have been conducted to develop agonists and antagonists for peripheral activity. The role of the oxytocin receptor in the central nervous system is also significant, promoting social interaction, trust, and empathy in humans. As such, molecules that can access the central nervous system and target the oxytocin receptor are of significant interest. Due to the role of the oxytocin receptor in regulating social function and psychological well-being, agonists of this receptor have considerable promise for the treatment of numerous neuropsychiatric conditions. The poor pharmacokinetic properties and blood-brain barrier penetration of peptide-based molecules means nonpeptide compounds have more commonly been the focus for central nervous system activity. This chapter aims to summarize the current standing of peptide and nonpeptide drug discovery for antagonists and agonists of the oxytocin receptor and focusses on centrally active nonpeptidic agonists.

© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Agonist; Antagonist; Oxytocin; Oxytocin receptor; Peptide; Small molecule; Vasopressin

References

  1. Jones DE, Greenberg M, Crowley M (2015) Early social-emotional functioning and public health: the relationship between kindergarten social competence and future wellness. Am J Public Health 105(11):2283–2290. https://doi.org/10.2105/AJPH.2015.302630 - PubMed
  2. Dutescu MM, Popescu RE, Balcu L, Duica LC, Strunoiu LM, Alexandru DO, Pirlog MC (2018) Social functioning in schizophrenia clinical correlations. Curr Health Sci J 44(2):151–156. https://doi.org/10.12865/CHSJ.44.02.10 - PubMed
  3. Fett AK, Shergill SS, Krabbendam L (2015) Social neuroscience in psychiatry: unravelling the neural mechanisms of social dysfunction. Psychol Med 45(6):1145–1165. https://doi.org/10.1017/S0033291714002487 - PubMed
  4. Hecht H, von Zerssen D, Krieg C, Possl J, Wittchen HU (1989) Anxiety and depression: comorbidity, psychopathology, and social functioning. Compr Psychiatry 30(5):420–433. https://doi.org/10.1016/0010-440x(89)90008-4 - PubMed
  5. Kupferberg A, Bicks L, Hasler G (2016) Social functioning in major depressive disorder. Neurosci Biobehav Rev 69:313–332. https://doi.org/10.1016/j.neubiorev.2016.07.002 - PubMed
  6. WHO (2011) Global status report on non-communicable diseases. WHO, Geneva - PubMed
  7. Murray ML, Hsia Y, Glaser K, Simonoff E, Murphy DG, Asherson PJ, Eklund H, Wong IC (2014) Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care. Psychopharmacology 231(6):1011–1021. https://doi.org/10.1007/s00213-013-3140-7 - PubMed
  8. Serretti A, Kato M (2008) The serotonin transporter gene and effectiveness of SSRIs. Expert Rev Neurother 8(1):111–120. https://doi.org/10.1586/14737175.8.1.111 - PubMed
  9. Cascade E, Kalali AH, Kennedy SH (2009) Real-world data on SSRI antidepressant side effects. Psychiatry (Edgmont) 6(2):16–18 - PubMed
  10. Griebel G, Holsboer F (2012) Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 11(6):462–478. https://doi.org/10.1038/nrd3702 - PubMed
  11. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683. https://doi.org/10.1152/physrev.2001.81.2.629 - PubMed
  12. Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628. https://doi.org/10.1111/j.1365-2826.2012.02303.x - PubMed
  13. Rinne M, Tanoli ZU, Khan A, Xhaard H (2019) Cartography of rhodopsin-like G protein-coupled receptors across vertebrate genomes. Sci Rep 9(1):7058. https://doi.org/10.1038/s41598-018-33120-8 - PubMed
  14. Baribeau D, Anagnostou E (2015) Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci 9(335). https://doi.org/10.3389/fnins.2015.00335 - PubMed
  15. Chini B, Mouillac B, Ala Y, Balestre MN, Trumpp-Kallmeyer S, Hoflack J, Elands J, Hibert M, Manning M, Jard S et al (1995) Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J 14(10):2176–2182 - PubMed
  16. Frantz MC, Pellissier LP, Pflimlin E, Loison S, Gandia J, Marsol C, Durroux T, Mouillac B, Becker JAJ, Le Merrer J, Valencia C, Villa P, Bonnet D, Hibert M (2018) LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J Med Chem 61(19):8670–8692. https://doi.org/10.1021/acs.jmedchem.8b00697 - PubMed
  17. Busnelli M, Bulgheroni E, Manning M, Kleinau G, Chini B (2013) Selective and potent agonists and antagonists for investigating the role of mouse oxytocin receptors. J Pharmacol Exp Ther 346(2):318–327. https://doi.org/10.1124/jpet.113.202994 - PubMed
  18. Makita N, Sato T, Yajima-Shoji Y, Sato J, Manaka K, Eda-Hashimoto M, Ootaki M, Matsumoto N, Nangaku M, Iiri T (2016) Analysis of the V2 vasopressin receptor (V2R) mutations causing partial nephrogenic diabetes insipidus highlights a sustainable signaling by a non-peptide V2R agonist. J Biol Chem 291(43):22460–22471. https://doi.org/10.1074/jbc.M116.733220 - PubMed
  19. Sawyer WH (1977) Evolution of neurohypophyseal hormones and their receptors. Fed Proc 36(6):1842–1847 - PubMed
  20. Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL (1987) Changes in oxytocin and vasopressin secretion during sexual activity in men. J Clin Endocrinol Metab 65(4):738–741. https://doi.org/10.1210/jcem-65-4-738 - PubMed
  21. Li C, Wang W, Summer SN, Westfall TD, Brooks DP, Falk S, Schrier RW (2008) Molecular mechanisms of antidiuretic effect of oxytocin. J Am Soc Nephrol 19(2):225–232. https://doi.org/10.1681/ASN.2007010029 - PubMed
  22. Hicks C, Ramos L, Reekie T, Misagh GH, Narlawar R, Kassiou M, McGregor IS (2014) Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats. Br J Pharmacol 171(11):2868–2887. https://doi.org/10.1111/bph.12613 - PubMed
  23. Jurek B, Neumann ID (2018) The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 98(3):1805–1908. https://doi.org/10.1152/physrev.00031.2017 - PubMed
  24. Higashida H, Yokoyama S, Huang J-J, Liu L, Ma W-J, Akther S, Higashida C, Kikuchi M, Minabe Y, Munesue T (2012) Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61(6):828–838. https://doi.org/10.1016/j.neuint.2012.01.030 - PubMed
  25. Israel S, Lerer E, Shalev I, Uzefovsky F, Riebold M, Laiba E, Bachner-Melman R, Maril A, Bornstein G, Knafo A, Ebstein RP (2009) The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task. PLoS One 4(5):e5535. https://doi.org/10.1371/journal.pone.0005535 - PubMed
  26. Kogan A, Saslow LR, Impett EA, Oveis C, Keltner D, Rodrigues Saturn S (2011) Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proc Natl Acad Sci U S A 108(48):19189. https://doi.org/10.1073/pnas.1112658108 - PubMed
  27. Tost H, Kolachana B, Hakimi S, Lemaitre H, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2010) A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci U S A 107(31):13936. https://doi.org/10.1073/pnas.1003296107 - PubMed
  28. Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D (2009) Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci U S A 106(50):21437. https://doi.org/10.1073/pnas.0909579106 - PubMed
  29. Chen FS, Kumsta R, von Dawans B, Monakhov M, Ebstein RP, Heinrichs M (2011) Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proc Natl Acad Sci U S A 108(50):19937. https://doi.org/10.1073/pnas.1113079108 - PubMed
  30. Williams JR, Insel TR, Harbaugh CR, Carter CS (1994) Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J Neuroendocrinol 6(3):247–250. https://doi.org/10.1111/j.1365-2826.1994.tb00579.x - PubMed
  31. Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ (2015) RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc Neurosci 10(5):561–570. https://doi.org/10.1080/17470919.2015.1040893 - PubMed
  32. Gordon I, Zagoory-Sharon O, Leckman JF, Feldman R (2010) Oxytocin and the development of parenting in humans. Biol Psychiatry 68(4):377–382. https://doi.org/10.1016/j.biopsych.2010.02.005 - PubMed
  33. Walum H, Lichtenstein P, Neiderhiser JM, Reiss D, Ganiban JM, Spotts EL, Pedersen NL, Anckarsater H, Larsson H, Westberg L (2012) Variation in the oxytocin receptor gene is associated with pair-bonding and social behavior. Biol Psychiatry 71(5):419–426. https://doi.org/10.1016/j.biopsych.2011.09.002 - PubMed
  34. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676. https://doi.org/10.1038/nature03701 - PubMed
  35. Shahrestani S, Kemp AH, Guastella AJ (2013) The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: a meta-analysis. Neuropsychopharmacology 38(10):1929–1936. https://doi.org/10.1038/npp.2013.86 - PubMed
  36. Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30(14):4999–5007. https://doi.org/10.1523/JNEUROSCI.5538-09.2010 - PubMed
  37. Young LJ, Barrett CE (2015) Can oxytocin treat autism? Science 347(6224):825. https://doi.org/10.1126/science.aaa8120 - PubMed
  38. De Dreu CKW, Greer LL, Handgraaf MJJ, Shalvi S, Van Kleef GA, Baas M, Ten Velden FS, Van Dijk E, Feith SWW (2010) The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328(5984):1408. https://doi.org/10.1126/science.1189047 - PubMed
  39. De Dreu CKW, Greer LL, Van Kleef GA, Shalvi S, Handgraaf MJJ (2011) Oxytocin promotes human ethnocentrism. Proc Natl Acad Sci U S A 108(4):1262. https://doi.org/10.1073/pnas.1015316108 - PubMed
  40. Shamay-Tsoory SG, Fischer M, Dvash J, Harari H, Perach-Bloom N, Levkovitz Y (2009) Intranasal administration of oxytocin increases envy and schadenfreude (gloating). Biol Psychiatry 66(9):864–870. https://doi.org/10.1016/j.biopsych.2009.06.009 - PubMed
  41. Beery AK (2015) Antisocial oxytocin: complex effects on social behavior. Curr Opin Behav Sci 6:174–182. https://doi.org/10.1016/j.cobeha.2015.11.006 - PubMed
  42. Cochran DM, Fallon D, Hill M, Frazier JA (2013) The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv Rev Psychiatry 21(5):219–247. https://doi.org/10.1097/HRP.0b013e3182a75b7d - PubMed
  43. Goodin BR, Ness TJ, Robbins MT (2015) Oxytocin – a multifunctional analgesic for chronic deep tissue pain. Curr Pharm Des 21(7):906–913. https://doi.org/10.2174/1381612820666141027111843 - PubMed
  44. Macdonald K, Feifel D (2012) Oxytocin in schizophrenia: a review of evidence for its therapeutic effects. Acta Neuropsychiatr 24(3):130–146. https://doi.org/10.1111/j.1601-5215.2011.00634.x - PubMed
  45. Macdonald K, Macdonald TM (2010) The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv Rev Psychiatry 18(1):1–21. https://doi.org/10.3109/10673220903523615 - PubMed
  46. Modi ME, Young LJ (2012) The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 61(3):340–350. https://doi.org/10.1016/j.yhbeh.2011.12.010 - PubMed
  47. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67(7):692–694. https://doi.org/10.1016/j.biopsych.2009.09.020 - PubMed
  48. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, Anagnostou E, Wasserman S (2007) Oxytocin increases retention of social cognition in autism. Biol Psychiatry 61(4):498–503. https://doi.org/10.1016/j.biopsych.2006.05.030 - PubMed
  49. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394. https://doi.org/10.1073/pnas.0910249107 - PubMed
  50. Hall SS, Lightbody AA, McCarthy BE, Parker KJ, Reiss AL (2012) Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome. Psychoneuroendocrinology 37(4):509–518. https://doi.org/10.1016/j.psyneuen.2011.07.020 - PubMed
  51. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, Mosovich S (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28(1):193–198. https://doi.org/10.1038/sj.npp.1300021 - PubMed
  52. Lee MR, Weerts EM (2016) Oxytocin for the treatment of drug and alcohol use disorders. Behav Pharmacol 27(8):640–648. https://doi.org/10.1097/FBP.0000000000000258 - PubMed
  53. Neumann ID, Landgraf R (2012) Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 35(11):649–659. https://doi.org/10.1016/j.tins.2012.08.004 - PubMed
  54. Leng G, Ludwig M (2016) Intranasal oxytocin: myths and delusions. Biol Psychiatry 79(3):243–250. https://doi.org/10.1016/j.biopsych.2015.05.003 - PubMed
  55. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447(1–2):75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030 - PubMed
  56. Dale HH (1906) On some physiological actions of ergot. J Physiol 34(3):163–206. https://doi.org/10.1113/jphysiol.1906.sp001148 - PubMed
  57. Russell JA, Leng G (1998) Sex, parturition and motherhood without oxytocin? J Endocrinol 157(3):343–359. https://doi.org/10.1677/joe.0.1570343 - PubMed
  58. Douglas AJ, Leng G, Russell JA (2002) The importance of oxytocin mechanisms in the control of mouse parturition. Reproduction 123(4):543–552. https://doi.org/10.1530/rep.0.1230543 - PubMed
  59. Crowley WR, Armstrong WE (1992) Neurochemical regulation of oxytocin secretion in lactation. Endocr Rev 13(1):33–65. https://doi.org/10.1210/edrv-13-1-33 - PubMed
  60. Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, Ben-Ari Y, Khazipov R (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314(5806):1788. https://doi.org/10.1126/science.1133212 - PubMed
  61. Thackare H, Nicholson HD, Whittington K (2006) Oxytocin—its role in male reproduction and new potential therapeutic uses. Hum Reprod Update 12(4):437–448. https://doi.org/10.1093/humupd/dmk002 - PubMed
  62. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177. https://doi.org/10.1038/nature11270 - PubMed
  63. Gulliver D, Werry E, Reekie TA, Katte TA, Jorgensen W, Kassiou M (2019) Targeting the oxytocin system: new pharmacotherapeutic approaches. Trends Pharmacol Sci 40(1):22–37. https://doi.org/10.1016/j.tips.2018.11.001 - PubMed
  64. Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd (2008) Vasopressin: behavioral roles of an “original” neuropeptide. Prog Neurobiol 84(1):1–24. https://doi.org/10.1016/j.pneurobio.2007.10.007 - PubMed
  65. Budden A, Chen LJY, Henry A (2014) High-dose versus low-dose oxytocin infusion regimens for induction of labour at term. Cochrane Database Syst Rev (10). https://doi.org/10.1002/14651858.CD009701.pub2 - PubMed
  66. Widmer M, Piaggio G, Nguyen TMH, Osoti A, Owa OO, Misra S, Coomarasamy A, Abdel-Aleem H, Mallapur AA, Qureshi Z, Lumbiganon P, Patel AB, Carroli G, Fawole B, Goudar SS, Pujar YV, Neilson J, Hofmeyr GJ, Su LL, Ferreira de Carvalho J, Pandey U, Mugerwa K, Shiragur SS, Byamugisha J, Giordano D, Gülmezoglu AM (2018) Heat-stable carbetocin versus oxytocin to prevent hemorrhage after vaginal birth. N Engl J Med 379(8):743–752. https://doi.org/10.1056/NEJMoa1805489 - PubMed
  67. Åkerlund M, Carlsson AM, Melin P, Trojnar J (1985) The effect on the human uterus of two newly developed competitive inhibitors of oxytocin and vasopressin. Acta Obstet Gynecol Scand 64(6):499–504. https://doi.org/10.3109/00016348509156728 - PubMed
  68. Lamont RF, Kam KYR (2008) Atosiban as a tocolytic for the treatment of spontaneous preterm labor. Expert Rev Obstet Gynecol 3(2):163–174. https://doi.org/10.1586/17474108.3.2.163 - PubMed
  69. Wiśniewski K (2019) Design of oxytocin analogs. In: Goetz G (ed) Cyclic peptide design, Methods in molecular biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_11 - PubMed
  70. Katte TA, Kassiou M (2017) A patent review of oxytocin receptor antagonists 2013–2017. Expert Opin Ther Pat 27(12):1287–1290. https://doi.org/10.1080/13543776.2017.1379992 - PubMed
  71. Muttenthaler M, Andersson A, Vetter I, Menon R, Busnelli M, Ragnarsson L, Bergmayr C, Arrowsmith S, Deuis JR, Chiu HS, Palpant NJ, O’Brien M, Smith TJ, Wray S, Neumann ID, Gruber CW, Lewis RJ, Alewood PF (2017) Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Sci Signal 10(508). https://doi.org/10.1126/scisignal.aan3398 - PubMed
  72. Beard R, Stucki A, Schmitt M, Py G, Grundschober C, Gee AD, Tate EW (2018) Building bridges for highly selective, potent and stable oxytocin and vasopressin analogs. Bioorg Med Chem 26(11):3039–3045. https://doi.org/10.1016/j.bmc.2018.03.019 - PubMed
  73. Wiśniewski K, Alagarsamy S, Galyean R, Tariga H, Thompson D, Ly B, Wiśniewska H, Qi S, Croston G, Laporte R, Rivière PJM, Schteingart CD (2014) New, potent, and selective peptidic oxytocin receptor agonists. J Med Chem 57(12):5306–5317. https://doi.org/10.1021/jm500365s - PubMed
  74. Kablaoui N, Vanase-Frawley M, Sciabola S (2018) Hybrid peptide-small molecule oxytocin analogs are potent and selective agonists of the oxytocin receptor. Bioorg Med Chem Lett 28(3):415–419. https://doi.org/10.1016/j.bmcl.2017.12.027 - PubMed
  75. Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z (2011) The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol 2011:350546. https://doi.org/10.1155/2011/350546 - PubMed
  76. Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2(4):274–286. https://doi.org/10.1038/35067575 - PubMed
  77. Busnelli M, Kleinau G, Muttenthaler M, Stoev S, Manning M, Bibic L, Howell LA, McCormick PJ, Di Lascio S, Braida D, Sala M, Rovati GE, Bellini T, Chini B (2016) Design and characterization of superpotent bivalent ligands targeting oxytocin receptor dimers via a channel-like structure. J Med Chem 59(15):7152–7166. https://doi.org/10.1021/acs.jmedchem.6b00564 - PubMed
  78. Ermisch A, Ruhle HJ, Landgraf R, Hess J (1985) Blood-brain barrier and peptides. J Cereb Blood Flow Metab 5(3):350–357. https://doi.org/10.1038/jcbfm.1985.49 - PubMed
  79. Humphrey MJ, Ringrose PS (1986) Peptides and related drugs: a review of their absorption, metabolism, and excretion. Drug Metab Rev 17(3–4):283–310. https://doi.org/10.3109/03602538608998293 - PubMed
  80. Pitt GR, Batt AR, Haigh RM, Penson AM, Robson PA, Rooker DP, Tartar AL, Trim JE, Yea CM, Roe MB (2004) Non-peptide oxytocin agonists. Bioorg Med Chem Lett 14(17):4585–4589. https://doi.org/10.1016/j.bmcl.2004.04.107 - PubMed
  81. Williams PD, Anderson PS, Ball RG, Bock MG, Carroll L, Chiu S-HL, Clineschmidt BV, Culberson JC, Erb JM (1994) 1-(((7,7-Dimethyl-2(S)-(2(S)-amino-4-(methylsulfonyl)butyramido)bicyclo[2.2.1]heptan-1(S)-yl)methyl)sulfonyl)-4-(2-methylphenyl)piperazine (L-368,899): an orally bioavailable, non-peptide oxytocin antagonist with potential utility for managing preterm labor. J Med Chem 37(5):565–571. https://doi.org/10.1021/jm00031a004 - PubMed
  82. Williams PD, Clineschmidt BV, Erb JM, Freidinger RM, Guidotti MT, Lis EV, Pawluczyk JM, Pettibone DJ, Reiss DR (1995) 1-[1-[4-[(N-Acetyl-4-piperidinyl)oxy]-2- methoxybenzoyl]piperidin-4-yl]-4H-3,1- benzoxazin-2(1H)-one (L-371,257): a new, orally bioavailable, non-peptide oxytocin antagonist. J Med Chem 38(23):4634–4636. https://doi.org/10.1021/jm00023a002 - PubMed
  83. Smith AL, Walum H, Connor-Stroud F, Freeman SM, Inoue K, Parr LA, Goodman MM, Young LJ (2017) An evaluation of central penetration from a peripherally administered oxytocin receptor selective antagonist in nonhuman primates. Bioorg Med Chem 25(1):305–315. https://doi.org/10.1016/j.bmc.2016.10.035 - PubMed
  84. Borthwick AD, Liddle J, Davies DE, Exall AM, Hamlett C, Hickey DM, Mason AM, Smith IED, Nerozzi F, Peace S, Pollard D, Sollis SL, Allen MJ, Woollard PM, Pullen MA, Westfall TD, Stanislaus DJ (2012) Pyridyl-2,5-diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists: synthesis, pharmacokinetics, and in vivo potency. J Med Chem 55(2):783–796. https://doi.org/10.1021/jm201287w - PubMed
  85. Mahar KM, Stier B, Fries M, McCallum SW (2015) A single- and multiple-dose study to investigate the pharmacokinetics of epelsiban and its metabolite, GSK2395448, in healthy female volunteers. Clin Pharmacol Drug Dev 4(6):418–426. https://doi.org/10.1002/cpdd.210 - PubMed
  86. https://www.obseva.com/nolasiban/ (2019) Nolasiban (OBE001) —Assisted Reproductive Technology - PubMed
  87. Liddle J, Allen MJ, Borthwick AD, Brooks DP, Davies DE, Edwards RM, Exall AM, Hamlett C, Irving WR, Mason AM, McCafferty GP, Nerozzi F, Peace S, Philp J, Pollard D, Pullen MA, Shabbir SS, Sollis SL, Westfall TD, Woollard PM, Wu C, Hickey DMB (2008) The discovery of GSK221149A: a potent and selective oxytocin antagonist. Bioorg Med Chem Lett 18(1):90–94. https://doi.org/10.1016/j.bmcl.2007.11.008 - PubMed
  88. Brown A, Brown TB, Calabrese A, Ellis D, Puhalo N, Ralph M, Watson L (2010) Triazole oxytocin antagonists: identification of an aryloxyazetidine replacement for a biaryl substituent. Bioorg Med Chem Lett 20(2):516–520. https://doi.org/10.1016/j.bmcl.2009.11.097 - PubMed
  89. Busnelli M, Saulière A, Manning M, Bouvier M, Galés C, Chini B (2012) Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 287(6):3617–3629 - PubMed
  90. Chollet A (2015) Pyrrolidine derivatives as oxytocin/vasopressin V1A receptors antagonists. United States Patent - PubMed
  91. McCafferty GP, Pullen MA, Wu C, Edwards RM, Allen MJ, Woollard PM, Borthwick AD, Liddle J, Hickey DMB, Brooks DP, Westfall TD (2007) Use of a novel and highly selective oxytocin receptor antagonist to characterize uterine contractions in the rat. Am J Phys Regul Integr Comp Phys 293(1):R299–R305. https://doi.org/10.1152/ajpregu.00057.2007 - PubMed
  92. Manning M, Stoev S, Chini B, Durroux T, Mouillac B, Guillon G (2008) Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res 170:473–512. https://doi.org/10.1016/S0079-6123(08)00437-8 - PubMed
  93. Moy SS, Teng BL, Nikolova VD, Riddick NV, Simpson CD, Van Deusen A, Janzen WP, Sassano MF, Pedersen CA, Jarstfer MB (2019) Prosocial effects of an oxytocin metabolite, but not synthetic oxytocin receptor agonists, in a mouse model of autism. Neuropharmacology 144:301–311. https://doi.org/10.1016/j.neuropharm.2018.10.036 - PubMed
  94. Frantz MC, Rodrigo J, Boudier L, Durroux T, Mouillac B, Hibert M (2010) Subtlety of the structure-affinity and structure-efficacy relationships around a nonpeptide oxytocin receptor agonist. J Med Chem 53(4):1546–1562. https://doi.org/10.1021/jm901084f - PubMed
  95. Hudson P, Pitt GRW, Batt AR, Roe MB (2004) Piperazines as oxytocin agonists. United States Patent - PubMed
  96. Ring RH, Schechter LE, Leonard SK, Dwyer JM, Platt BJ, Graf R, Grauer S, Pulicicchio C, Resnick L, Rahman Z, Sukoff Rizzo SJ, Luo B, Beyer CE, Logue SF, Marquis KL, Hughes ZA, Rosenzweig-Lipson S (2010) Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 58(1):69–77. https://doi.org/10.1016/j.neuropharm.2009.07.016 - PubMed
  97. Hicks C, Jorgensen W, Brown C, Fardell J, Koehbach J, Gruber CW, Kassiou M, Hunt GE, McGregor IS (2012) The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J Neuroendocrinol 24(7):1012–1029. https://doi.org/10.1111/j.1365-2826.2012.02311.x - PubMed
  98. Jorgensen WT, Gulliver DW, Werry EL, Reekie T, Connor M, Kassiou M (2016) Flexible analogues of WAY-267,464: synthesis and pharmacology at the human oxytocin and vasopressin 1a receptors. Eur J Med Chem 108:730–740. https://doi.org/10.1016/j.ejmech.2015.11.050 - PubMed
  99. Carter CS (2017) The oxytocin-vasopressin pathway in the context of love and fear. Front Endocrinol (Lausanne) 8:356. https://doi.org/10.3389/fendo.2017.00356 - PubMed
  100. Hicks C, Ramos L, Reekie TA, Narlawar R, Kassiou M, McGregor IS (2015) WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action. Psychopharmacology 232(15):2659–2667. https://doi.org/10.1007/s00213-015-3902-5 - PubMed
  101. Jorgensen WT, Gulliver DW, Katte TA, Werry EL, Reekie TA, Connor M, Kassiou M (2018) Conformationally rigid derivatives of WAY-267,464: synthesis and pharmacology at the human oxytocin and vasopressin-1a receptors. Eur J Med Chem 143:1644–1656. https://doi.org/10.1016/j.ejmech.2017.10.059 - PubMed
  102. Kassiou M, Jorgensen W, Werry E, Reekie T, Bowen M, McGregor IS (2018) Non-peptide oxytocin receptor agonists. Australia Patent - PubMed
  103. Passoni I, Leonzino M, Gigliucci V, Chini B, Busnelli M (2016) Carbetocin is a functional selective Gq agonist that does not promote oxytocin receptor recycling after inducing β-arrestin-independent internalisation. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12363 - PubMed
  104. Tachibana M, Kagitani-Shimono K, Mohri I, Yamamoto T, Sanefuji W, Nakamura A, Oishi M, Kimura T, Onaka T, Ozono K, Taniike M (2013) Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J Child Adolesc Psychopharmacol 23(2):123–127. https://doi.org/10.1089/cap.2012.0048 - PubMed
  105. Hilfiger L, Zhao Q, Kerspern D, Inquimbert P, Andry V, Goumon Y, Darbon P, Hibert M, Charlet A (2020) A nonpeptide oxytocin receptor agonist for a durable relief of inflammatory pain. Sci Rep 10(1):3017. https://doi.org/10.1038/s41598-020-59929-w - PubMed
  106. Waltenspühl Y, Schöppe J, Ehrenmann J, Kummer L, Plückthun A (2020) Crystal structure of the human oxytocin receptor. Sci Adv 6(29):eabb5419. https://doi.org/10.1126/sciadv.abb5419 - PubMed

Publication Types