Display options
Share it on

Polymers (Basel). 2021 Sep 15;13(18). doi: 10.3390/polym13183113.

Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels.

Polymers

Francisco Drusso Martinez-Garcia, Roderick Harold Jan de Hilster, Prashant Kumar Sharma, Theo Borghuis, Machteld Nelly Hylkema, Janette Kay Burgess, Martin Conrad Harmsen

Affiliations

  1. Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands.
  2. W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
  3. Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands.
  4. Department of Biomedical Engineering-FB40, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

PMID: 34578013 PMCID: PMC8470996 DOI: 10.3390/polym13183113

Abstract

The proteins and polysaccharides of the extracellular matrix (ECM) provide architectural support as well as biochemical and biophysical instruction to cells. Decellularized, ECM hydrogels replicate in vivo functions. The ECM's elasticity and water retention renders it viscoelastic. In this study, we compared the viscoelastic properties of ECM hydrogels derived from the skin, lung and (cardiac) left ventricle and mathematically modelled these data with a generalized Maxwell model. ECM hydrogels from the skin, lung and cardiac left ventricle (LV) were subjected to a stress relaxation test under uniaxial low-load compression at a 20%/s strain rate and the viscoelasticity determined. Stress relaxation data were modelled according to Maxwell. Physical data were compared with protein and sulfated GAGs composition and ultrastructure SEM. We show that the skin-ECM relaxed faster and had a lower elastic modulus than the lung-ECM and the LV-ECM. The skin-ECM had two Maxwell elements, the lung-ECM and the LV-ECM had three. The skin-ECM had a higher number of sulfated GAGs, and a highly porous surface, while both the LV-ECM and the lung-ECM had homogenous surfaces with localized porous regions. Our results show that the elasticity of ECM hydrogels, but also their viscoelastic relaxation and gelling behavior, was organ dependent. Part of these physical features correlated with their biochemical composition and ultrastructure.

Keywords: ECM hydrogel; Maxwell model; decellularized organs; extracellular matrix; viscoelasticity

References

  1. Exp Cell Res. 2016 Apr 10;343(1):60-66 - PubMed
  2. Biomaterials. 2005 Sep;26(27):5474-91 - PubMed
  3. Trends Biotechnol. 2018 Aug;36(8):787-805 - PubMed
  4. Adv Drug Deliv Rev. 2016 Feb 1;97:4-27 - PubMed
  5. Curr Opin Cell Biol. 2021 May 13;72:10-18 - PubMed
  6. Am J Physiol Lung Cell Mol Physiol. 2001 Feb;280(2):L306-15 - PubMed
  7. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  8. J Biol Chem. 1979 Nov 25;254(22):11741-5 - PubMed
  9. Biomaterials. 2015 Jun;52:367-75 - PubMed
  10. Acta Biomater. 2017 Feb;49:1-15 - PubMed
  11. J Biomed Mater Res A. 2016 Aug;104(8):1922-35 - PubMed
  12. MethodsX. 2015 Feb 21;2:124-34 - PubMed
  13. Br J Pharmacol. 2009 Aug;157(7):1111-27 - PubMed
  14. Sci Rep. 2019 Jun 7;9(1):8352 - PubMed
  15. Am J Physiol Lung Cell Mol Physiol. 2020 Apr 1;318(4):L698-L704 - PubMed
  16. Adv Healthc Mater. 2020 Apr;9(8):e1901259 - PubMed
  17. Int J Endocrinol Metab. 2012 Spring;10(2):486-9 - PubMed
  18. Sci Rep. 2019 Oct 17;9(1):14933 - PubMed
  19. Connect Tissue Res. 1982;9(4):247-8 - PubMed
  20. J Pathol. 2016 Dec;240(4):397-409 - PubMed
  21. J Biomed Mater Res A. 2004 May 1;69(2):359-66 - PubMed
  22. Life Sci Alliance. 2021 Jan 27;4(3): - PubMed
  23. Nature. 2020 Aug;584(7822):535-546 - PubMed
  24. J Tissue Eng. 2018 Mar 29;9:2041731418768285 - PubMed
  25. Tissue Eng Part C Methods. 2020 Jun;26(6):332-346 - PubMed
  26. Biopolymers. 2010 Aug;93(8):690-707 - PubMed
  27. Nat Commun. 2015 Nov 09;6:8720 - PubMed
  28. BMC Bioinformatics. 2006 Mar 09;7:123 - PubMed
  29. Acta Biomater. 2020 Jan 15;102:231-246 - PubMed
  30. Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801 - PubMed
  31. J Cell Sci. 1990 Apr;95 ( Pt 4):649-57 - PubMed
  32. Dis Model Mech. 2011 Mar;4(2):165-78 - PubMed
  33. Front Bioeng Biotechnol. 2020 May 29;8:520 - PubMed
  34. Exp Mol Med. 2019 Dec 19;51(12):1-15 - PubMed
  35. Nat Mater. 2016 Mar;15(3):326-34 - PubMed
  36. Materials (Basel). 2018 Mar 20;11(3): - PubMed
  37. Biomaterials. 2016 Nov;106:58-68 - PubMed
  38. Biopolymers. 2000 Sep;54(3):222-34 - PubMed
  39. J Biomed Mater Res A. 2010 Jan;92(1):359-68 - PubMed
  40. Nat Commun. 2017 May 16;8:15261 - PubMed
  41. J Tissue Eng Regen Med. 2019 Jun;13(6):973-985 - PubMed
  42. Biomech Model Mechanobiol. 2017 Feb;16(1):213-225 - PubMed
  43. J Adv Res. 2015 Mar;6(2):105-21 - PubMed
  44. mBio. 2013 Oct 15;4(5):e00497-13 - PubMed
  45. Chem Rev. 2001 Jul;101(7):1869-79 - PubMed
  46. Biomaterials. 2009 Sep;30(27):4550-7 - PubMed
  47. Head Face Med. 2006 Feb 17;2:4 - PubMed
  48. Histochem J. 1979 Jul;11(4):447-55 - PubMed
  49. PLoS One. 2013;8(1):e52509 - PubMed
  50. Br J Pharmacol. 2019 Jan;176(1):82-92 - PubMed
  51. Biomaterials. 2002 Feb;23(4):1205-12 - PubMed

Publication Types