Display options
Share it on

CA Cancer J Clin. 2021 Oct 06; doi: 10.3322/caac.21702. Epub 2021 Oct 06.

Critical care management of chimeric antigen receptor T-cell therapy recipients.

CA: a cancer journal for clinicians

Alexander Shimabukuro-Vornhagen, Boris Böll, Peter Schellongowski, Sandrine Valade, Victoria Metaxa, Elie Azoulay, Michael von Bergwelt-Baildon

Affiliations

  1. Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
  2. Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany.
  3. Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Center, Center of Excellence in Medical Intensive Care (CEMIC), Medical University of Vienna, Vienna, Austria.
  4. Medical Intensive Care Unit, St Louis Teaching Hospital, Public Assistance Hospitals of Paris, Paris, France.
  5. Department of Critical Care, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.
  6. Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
  7. Munich Comprehensive Cancer Center, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
  8. Bavarian Center for Cancer Research, Munich, Germany.
  9. Nine-i Multinational Research Network, Service de Médecine Intensive et Réanimaton Médicale, Hôpital Saint-Louis, France.
  10. German Cancer Consortium, Partner Site Munich, Munich, Germany.

PMID: 34613616 DOI: 10.3322/caac.21702

Abstract

Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapeutic treatment concept that is changing the treatment approach to hematologic malignancies. The development of CAR T-cell therapy represents a prime example for the successful bench-to-bedside translation of advances in immunology and cellular therapy into clinical practice. The currently available CAR T-cell products have shown high response rates and long-term remissions in patients with relapsed/refractory acute lymphoblastic leukemia and relapsed/refractory lymphoma. However, CAR T-cell therapy can induce severe life-threatening toxicities such as cytokine release syndrome, neurotoxicity, or infection, which require rapid and aggressive medical treatment in the intensive care unit setting. In this review, the authors provide an overview of the state-of-the-art in the clinical management of severe life-threatening events in CAR T-cell recipients. Furthermore, key challenges that have to be overcome to maximize the safety of CAR T cells are discussed.

© 2021 The Authors. CA: A Cancer Journal for Clinicians published by Wiley Periodicals LLC on behalf of American Cancer Society.

Keywords: chimeric antigen receptor (CAR) T cells; critical care; immune-oncology; lymphoblastic leukemia-lymphoma; non-Hodgkin lymphoma

References

  1. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099-4102. - PubMed
  2. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73. - PubMed
  3. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra38. - PubMed
  4. Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A. 2006;103:17372-17377. - PubMed
  5. Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449-459. - PubMed
  6. Myers RM, Li Y, Barz Leahy A, et al. Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol. Published online June 22, 2021. doi:10.1200/JCO.20.03458 - PubMed
  7. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531-2544. - PubMed
  8. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545-2554. - PubMed
  9. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331-1342. - PubMed
  10. Chong EA, Ruella M, Schuster SJ, Lymphoma Program Investigators at the University of Pennsylvania. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N Engl J Med. 2021;384:673-674. - PubMed
  11. Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726-1737. - PubMed
  12. Greenbaum U, Yainiz FF, Srour SA, et al. Chimeric antigen receptor therapy: how are we driving in solid tumors? Biol Blood Marrow Transplant. 2020;26:1759-1769. doi:10.1016/j.bbmt.2020.06.020 - PubMed
  13. Huang M, Deng J, Gao L, Zhou J. Innovative strategies to advance CAR T cell therapy for solid tumors. Am J Cancer Res. 2020;10:1979-1992. - PubMed
  14. Maldini CR, Ellis GI, Riley JL. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol. 2018;18:605-616. doi:10.1038/s41577-018-0042-2 - PubMed
  15. Seif M, Einsele H, Loffler J. CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front Immunol. 2019;10:2711. - PubMed
  16. Shimabukuro-Vornhagen A, Boll B, Kochanek M, Azoulay E, von Bergwelt-Baildon MS. Critical care of patients with cancer. CA Cancer J Clin. 2016;66:496-517. doi:10.3322/caac.21351 - PubMed
  17. Massion PB, Dive AM, Doyen C, et al. Prognosis of hematologic malignancies does not predict intensive care unit mortality. Crit Care Med. 2020;30:2260-2270. - PubMed
  18. van Vliet M, van den Boogard M, Donnelly JP, Evers AWM, Blijlevens NMA, Pickkers P. Long-term health related quality of life following intensive care during treatment for haematological malignancies. PLoS One. 2014;9:e87779. - PubMed
  19. Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45:e124-e131. - PubMed
  20. Azoulay E, Castro P, Maamar A, et al. Outcomes in patients treated with chimeric antigen receptor T-cell therapy who were admitted to intensive care (CARTTAS): an international, multicentre, observational cohort study. Lancet Haematol. 2021;8:e355-e364. - PubMed
  21. Wudhikarn K, Pennisi M, Garcia-Recio M, et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 2020;4:3024-3033. - PubMed
  22. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724-740. - PubMed
  23. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024-10028. - PubMed
  24. Guedan S, Ruella M, June CH. Emerging cellular therapies for cancer. Annu Rev Immunol. 2019;37:145-171. - PubMed
  25. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20:70-75. - PubMed
  26. Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18:676-684. - PubMed
  27. van der Stegen SJC, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14:499-509. - PubMed
  28. Yu JX, Upadhaya S, Tatake R, Barkalow F, Hubbard-Lucey VM. Cancer cell therapies: the clinical trial landscape. Nat Rev Drug Discov. 2020;19:583-584. doi:10.1038/d41573-020-00099-9 - PubMed
  29. O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984. - PubMed
  30. Robbins PF, Kassin SH, Tran TLN, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21:1019-1027. - PubMed
  31. Boyiadzis MM, Dhodapkar MV, Brentjens RJ, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer. 2018;6:137. - PubMed
  32. Sim AJ, Jain MD, Figura NB, et al. Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 2019;105:1012-1021. - PubMed
  33. Pinnix CC, Gunther JR, Dabaja BS, et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma. Blood Adv. 2020;4:2871-2883. - PubMed
  34. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507-1517. - PubMed
  35. Cappell KM, Sherry RM, Yang JC, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J Clin Oncol. 2020;38:3805-3815. doi:10.1200/JCO.20.01467 - PubMed
  36. Shalabi H, Sachdev V, Kulshreshtha A, et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. J Immunother Cancer. 2020;8:e001159. - PubMed
  37. Nagle SJ, Murphree C, Raess PW, et al. Prolonged hematologic toxicity following treatment with chimeric antigen receptor T cells in patients with hematologic malignancies. Am J Hematol. 2021;96:455-461. - PubMed
  38. Fried S, Avigdor A, Bielorai B, et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019;54:1643-1650. - PubMed
  39. Jhaveri KD, Rosner MH. Chimeric antigen receptor T cell therapy and the kidney: what the nephrologist needs to know. Clin J Am Soc Nephrol. 2018;13:796-798. - PubMed
  40. Gupta S, Seethapathy H, Strohbehn IA, et al. Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma. Am J Kidney Dis. 2020;76:63-71. - PubMed
  41. Rubin DB, Danish HH, Ali AB, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain. 2019;142:1334-1348. - PubMed
  42. Abu-Sbeih H, Tang T, Ali S, et al. Gastrointestinal adverse events observed after chimeric antigen receptor T-cell therapy. Am J Clin Oncol. 2019;42:789-796. - PubMed
  43. Gutgarts V, Jain T, Zheng J, et al. Acute kidney injury after CAR-T cell therapy: low incidence and rapid recovery. Biol Blood Marrow Transplant. 2020;26:1071-1076. - PubMed
  44. Budde LE, Zaia JA. CD19 CAR-T therapy and sepsis: dancing with the devil. Blood. 2018;141:7-8. - PubMed
  45. Cordeiro A, Bezerra ED, Hirayama AV, et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant. 2020;26:26-33. - PubMed
  46. Shimabukuro-Vornhagen A, Godel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6:56. - PubMed
  47. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739-748. - PubMed
  48. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731-738. - PubMed
  49. Sandler RD, Tattersall RS, Schoemans Y, et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults; a review of the literature and a survey of practice within EBMT centres on behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP). Front Immunol. 2020;11:524. - PubMed
  50. Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol. 2020;38:1938-1950. - PubMed
  51. Siddiqi T, Abramson JS, Li D, et al. Patient characteristics and pre-infusion biomarkers of inflammation correlate with clinical outcomes after treatment with the defined composition, CD19-targeted CAR T cell product, JCAR017 [abstract]. Blood. 2017;130:193. - PubMed
  52. Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies. J Allergy Clin Immunol. 2020;146:940-948. doi:10.1016/j.jaci.2020.07.025 - PubMed
  53. Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7:1404-1419. - PubMed
  54. Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book. 2019;39:433-444. doi:10.1200/EDBK_238691 - PubMed
  55. Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8:958-971. doi:10.1158/2159-8290.CD-17-1319 - PubMed
  56. Taraseviciute A, Tkahcev V, Ponce R, et al. Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates. Cancer Discov. 2018;8:750-763. doi:10.1158/2159-8290.CD-17-1368 - PubMed
  57. Parker KR, Migliorini D, Perkey E, et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell. 2020;183:126-142.e17. - PubMed
  58. Hill JA, Giralt S, Torgerson TR, Lazarus HM. CAR-T-and a side order of IgG, to go? Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 2019;38:100596. - PubMed
  59. Hill JA, Krantz EM, Hay KA, et al. Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Adv. 2019;3:3590-3601. - PubMed
  60. Logue JM, Zucchetti E, Bachmeier CA, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica. 2021;106:978-986. doi:10.3324/haematol.2019.238634 - PubMed
  61. Rejeski K, Perez-Perez A, Sesques P, et al. CAR-HEMATOTOX: a model for CAR T-cell related hematological toxicity in relapsed/refractory large B-cell lymphoma. Blood. Published online June 24, 2021. doi:10.1182/blood.2020010543 - PubMed
  62. Vora SB, Waghmare A, Englund JA, Qu P, Gardner RA, Hill JA. Infectious complications following CD19 chimeric antigen receptor T-cell therapy for children, adolescents, and young adults. Open Forum Infect Dis. 2020;7:ofaa121. - PubMed
  63. Hill JA, Seo SK. How we prevent infections in patients receiving CD19-targeted chimeric antigen receptor T-cells for B-cell malignancies. Blood. 2020;136:925-935. doi:10.1182/blood.2019004000 - PubMed
  64. Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131:121-130. doi:10.1182/blood-2017-07-793760 - PubMed
  65. Ogba N, Arwood NM, Bartlett NL, et al. Chimeric antigen receptor T-cell therapy. J Natl Compr Canc Netw. 2018;16:1092-1106. doi:10.6004/jnccn.2018.0073 - PubMed
  66. Gutierrez C, Brown ART, Herr MM, et al. The chimeric antigen receptor-intensive care unit (CAR-ICU) initiative: surveying intensive care unit practices in the management of CAR T-cell associated toxicities. J Crit Care. 2020;58:58-64. - PubMed
  67. Hayden PJ, Sirait T, Koster L, Snowden JA, Yakoub-Agha I. An international survey on the management of patients receiving CAR T-cell therapy for haematological malignancies on behalf of the Chronic Malignancies Working Party of EBMT. Current Res Transl Med. 2019;67:79-88. - PubMed
  68. Lindner SE, Johnson SM, Brown CE, Wang LD. Chimeric antigen receptor signaling: functional consequences and design implications. Sci Adv. 2020;6:eaaz3223. - PubMed
  69. Azoulay E, Shimabukuro-Vornhagen A, Darmon M, von Bergwelt-Baildon M. Critical care management of chimeric antigen receptor T cell-related toxicity. Be aware and prepared. Am J Respir Crit Care Med. 2019;200:20-23. - PubMed
  70. Neill L, Rees J, Roddie C. Neurotoxicity-CAR T-cell therapy: what the neurologist needs to know. Pract Neurol. 2020;20:285-293. doi:10.1136/practneurol-2020-002550 - PubMed
  71. Ruark J, Mullane E, Cleary N, et al. Patient-reported neuropsychiatric outcomes of long-term survivors after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant. 2020;26:34-43. - PubMed
  72. Prudent V, Breitbart WS. Chimeric antigen receptor T-cell neuropsychiatric toxicity in acute lymphoblastic leukemia. Palliat Support Care. 2017;15:499-503. - PubMed
  73. Ganatra S, Carver JR, Hayek SS, et al. Chimeric antigen receptor T-cell therapy for cancer and heart: JACC Council perspectives. J Am Coll Cardiol. 2019;74:3153-3163. - PubMed
  74. Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-Hodgkin lymphoma. Circulation. 2020;142:1687-1690. - PubMed
  75. Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018;11:35. - PubMed
  76. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45-55. doi:10.1016/j.blre.2018.11.002 - PubMed
  77. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188-195. - PubMed
  78. Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47-62. - PubMed
  79. Lee DW, Santomasso BD, Locke FL, et al. ASBMT consensus grading for cytokine release syndrome and neurological toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25:625-638. doi:10.1016/j.bbmt.2018.12.758 - PubMed
  80. Pennisi M, Jain T, Santomaso BD, et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4:676-686. - PubMed
  81. Lin RJ, Lobaugh SM, Pennisi M, et al. Impact and safety of chimeric antigen receptor T-cell therapy in older, vulnerable patients with relapsed/refractory large B-cell lymphoma. Haematologica. 2020;106:255-258. doi:10.3324/haematol.2019.243246 - PubMed
  82. Cardoso LTQ, Grion CMC, Matsuo T, et al. Impact of delayed admission to intensive care units on mortality of critically ill patients: a cohort study. Crit Care. 2011;15:R28. - PubMed
  83. Brown ART, Jindani I, Melancon J, et al. ICU resource use in critically ill patients following chimeric antigen receptor T-cell therapy. Am J Respir Crit Care Med. 2020;202:1184-1187. doi:10.1164/rccm.202002-0286LE - PubMed
  84. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20:119-122. - PubMed
  85. Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23:943-947. - PubMed
  86. Si S, Teachey DT. Spotlight on tocilizumab in the treatment of CAR-T-cell-induced cytokine release syndrome: clinical evidence to date. Ther Clin Risk Manag. 2020;16:705-714. - PubMed
  87. Borrega JG, Godel P, Ruger MA, et al. In the eye of the storm: immune-mediated toxicities associated with CAR-T cell therapy. Hemasphere. 2018;3:e191. - PubMed
  88. Locke FL, Neelapu SS, Bartlett NL, et al. Preliminary results of prophylactic tocilizumab after axicabtagene ciloleucel (Axi-Cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL) [abstract]. Blood. 2017;130(suppl 1):1547. - PubMed
  89. Jiang Z, Liao R, Lv J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells. Leukemia. 2021;35:1380-1391. - PubMed
  90. Knochelmann HM, Dwyer CJ, Smith AS, et al. IL6 fuels durable memory for Th17 cell-mediated responses to tumors. Cancer Res. 2020;80:3920-3932. - PubMed
  91. Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563-571. - PubMed
  92. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19:867-880. - PubMed
  93. Barrett DM, Singh N, Hofmann TJ, Gershenson Z, Grupp SA. Interleukin 6 is not made by chimeric antigen receptor T cells and does not impact their function [abstract]. Blood. 2016;128:654. - PubMed
  94. Schuster SJ, Bishop MR, Tam CS, et al. Long-term follow-up of tisagenlecleucel in adult patients with relapsed or refractory diffuse large B-cell lymphoma: updated analysis of Juliet study. Biol Blood Marrow Transplant. 2019;25(3 suppl):S20-S21. doi:10.1016/j.bbmt.2018.12.089 - PubMed
  95. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137:3272-3276. - PubMed
  96. Topp M, van Meerten T, Houot R, et al. Earlier steroid use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory large B cell lymphoma (R/R LBCL) [abstract]. Biol Blood Marrow Transplant. 2019;26(3 suppl):S101. doi:10.1016/j.bbmt.2019.12.603 - PubMed
  97. Kadauke S, Myers RM, Li Y, et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: a prospective clinical trial. J Clin Oncol. 2021;39:920-930. doi:10.1200/JCO.20.02477 - PubMed
  98. Banerjee R, Fakhri B, Shah N. Toci or not toci: innovations in the diagnosis, prevention, and early management of cytokine release syndrome. Leuk Lymphoma. Published online June 21, 2021. doi:10.1080/10428194.2021.1924370 - PubMed
  99. Jatiani SS, Aleman A, Maddurio D, et al. Myeloma CAR-T CRS management with IL-1R antagonist anakinra. Clin Lymphoma Myeloma Leuk. 2020;20:632-636.e1. - PubMed
  100. Li S, Wang X, Yuan Z, et al. Eradication of T-ALL cells by CD7-targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin Cancer Res. 2021;27:1242-1246. doi:10.1158/1078-0432.CCR-20-1271 - PubMed
  101. Wei S, Gu R, Xu Y, et al. Adjuvant ruxolitinib therapy relieves steroid-refractory cytokine-release syndrome without impairing chimeric antigen receptor-modified T-cell function. Immunotherapy. 2020;12:1047-1052. - PubMed
  102. Weber EW, Lynn RC, Sotillo E, Lattin J, Xu P, Mackall CL. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019;3:711-717. - PubMed
  103. Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019;11:eaau5907. - PubMed
  104. Stahl K, Schmidt BMW, Hoeper MM, et al. Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. J Crit Care. 2020;57:124-129. - PubMed
  105. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843-851. - PubMed
  106. Liu H, Ma Y, Yang C, et al. Severe delayed pulmonary toxicity following PD-L1-specific CAR-T cell therapy for non-small cell lung cancer. Clin Transl Immunology. 2020;9:e1154. - PubMed
  107. Ceppi F, Annesley C, Finney O, et al. Minimal change in CAR T cell manufacturing can impact in expansion and side effect of the CAR T cell therapy [abstract]. Blood. 2018;132(suppl 1):4012. - PubMed
  108. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70:86-104. - PubMed
  109. Diorio C, Shaw PA, Pequignot E, et al. Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Adv. 2020;4:5174-5183. - PubMed
  110. Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664-679. doi:10.1158/2159-8290.CD-16-0040 - PubMed
  111. Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T cell therapy. Blood. 2017;130:2295-2306. doi:10.1182/blood-2017-06-793141 - PubMed
  112. Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26:1878-1887. doi:10.1038/s41591-020-1061-7 - PubMed
  113. MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38:233-244. - PubMed
  114. Lecuyer L, Chevret S, Thiery G, Darmon M, Schlemmer B, Azoulay E. The ICU trial: a new admission policy for cancer patients requiring mechanical ventilation. Crit Care Med. 2007;35:808-814. - PubMed
  115. Bach PB. National coverage analysis of CAR-T therapies-policy, evidence, and payment. N Engl J Med. 2018;379:1396-1398. - PubMed
  116. Walker A, Johnson R. Commercialization of cellular immunotherapies for cancer. Biochem Soc Trans. 2016;44:329-332. - PubMed
  117. Lin JK, Muffly LS, Spinner MA, Barnes JI, Owens DK, Goldhaber-Fiebert JD. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J Clin Oncol. 2019;37:2105-2119. - PubMed
  118. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term survival and cost-effectiveness associated with axicabtagene ciloleucel vs chemotherapy for treatment of B-cell lymphoma. JAMA Netw Open. 2019;2:e190035. - PubMed
  119. Yang H, Hao Y, Chai X, Qi CZ, Wu EQ. Estimation of total costs in patients with relapsed or refractory diffuse large B-cell lymphoma receiving tisagenlecleucel from a US hospital's perspective. J Med Econ. 2020;23:1016-1024. doi:10.1080/13696998.2020.1769109 - PubMed
  120. Broder MS, Ma Q, Yan T, et al. Economic burden of neurologic toxicities associated with treatment of patients with relapsed or refractory diffuse large B-cell lymphoma in the United States. Am Health Drug Benefits. 2020;13:192-199. - PubMed
  121. Abramson JS, Siddiqui T, Garcia J, et al. Cytokine release syndrome and neurological event costs in lisocabtagene maraleucel-treated patients in the TRANSCEND NHL 001 trial. Blood Adv. 2021;5:1695-1705. - PubMed

Publication Types