Display options
Share it on

Cell Death Dis. 2021 Oct 06;12(10):914. doi: 10.1038/s41419-021-04191-9.

Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound.

Cell death & disease

Tatiana A Giovannucci, Florian A Salomons, Martin Haraldsson, Lotta H M Elfman, Malin Wickström, Patrick Young, Thomas Lundbäck, Jürgen Eirich, Mikael Altun, Rozbeh Jafari, Anna-Lena Gustavsson, John Inge Johnsen, Nico P Dantuma

Affiliations

  1. Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
  2. Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden.
  3. Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
  4. Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
  5. Science for Life Laboratory, Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Stockholm, Sweden.
  6. Science for Life Laboratory, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Solna, Stockholm, Sweden.
  7. Institute of Plant Biology and Biotechnology, University of Muenster, 48143, Muenster, Germany.
  8. Science for Life Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
  9. Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden. [email protected].

PMID: 34615851 PMCID: PMC8494907 DOI: 10.1038/s41419-021-04191-9

Abstract

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.

© 2021. The Author(s).

References

  1. Cancer Res. 1984 Dec;44(12 Pt 1):5638-43 - PubMed
  2. Nat Biotechnol. 2000 May;18(5):538-43 - PubMed
  3. Mol Cell. 2012 Jul 13;47(1):76-86 - PubMed
  4. BMC Biol. 2014 Nov 11;12:94 - PubMed
  5. Front Chem. 2020 Feb 11;8:64 - PubMed
  6. Sci Rep. 2016 Aug 22;6:31782 - PubMed
  7. Trends Biochem Sci. 2019 Jul;44(7):599-615 - PubMed
  8. Curr Protoc Chem Biol. 2011;3(4):153-162 - PubMed
  9. Br J Cancer. 1997;76(7):852-4 - PubMed
  10. Annu Rev Biochem. 2008;77:383-414 - PubMed
  11. J Med Chem. 2010 Apr 8;53(7):2719-40 - PubMed
  12. Mol Pharmacol. 2003 Sep;64(3):714-20 - PubMed
  13. Arch Biochem Biophys. 1997 Oct 15;346(2):219-29 - PubMed
  14. Cell Chem Biol. 2017 Dec 21;24(12):1501-1512.e5 - PubMed
  15. Nat Commun. 2016 Dec 14;7:13593 - PubMed
  16. Am J Trop Med Hyg. 2017 Nov;97(5):1289-1303 - PubMed
  17. J Antimicrob Chemother. 2015 Sep;70(9):2456-64 - PubMed
  18. Science. 2004 Oct 1;306(5693):117-20 - PubMed
  19. Biochem Pharmacol. 1986 Jan 1;35(1):97-103 - PubMed
  20. Cell Chem Biol. 2017 Dec 21;24(12):1490-1500.e11 - PubMed
  21. Hum Mol Genet. 2005 Oct 1;14(19):2787-99 - PubMed
  22. Mol Syst Biol. 2017 Oct 9;13(10):945 - PubMed
  23. Chem Biol. 2002 Oct;9(10):1149-59 - PubMed
  24. Cell. 2009 Mar 6;136(5):823-37 - PubMed
  25. J Biol Chem. 1997 Apr 4;272(14):9086-92 - PubMed
  26. Cancer Cell. 2016 Dec 12;30(6):940-952 - PubMed
  27. Cancer Cell. 2004 May;5(5):417-21 - PubMed
  28. Cancer Inform. 2014 Dec 09;13(Suppl 4):65-72 - PubMed
  29. Genome Biol. 2014;15(12):554 - PubMed
  30. Mol Cell Biol. 2009 Apr;29(7):1774-85 - PubMed
  31. Nature. 2010 Sep 9;467(7312):179-84 - PubMed
  32. Cell. 2005 Dec 2;123(5):773-86 - PubMed
  33. Chem Biol. 2011 Nov 23;18(11):1401-12 - PubMed
  34. Nat Med. 2011 Nov 06;17(12):1636-40 - PubMed
  35. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1188-93 - PubMed
  36. Chem Biol. 2012 Jul 27;19(7):883-92 - PubMed
  37. Pharmacol Rev. 2021 Jan;73(1):1-58 - PubMed
  38. Chem Biol. 2012 Jan 27;19(1):99-115 - PubMed
  39. Cancer Res. 1999 Jun 1;59(11):2615-22 - PubMed
  40. Structure. 2017 Dec 5;25(12):1839-1855.e11 - PubMed
  41. FEBS Lett. 2011 Sep 16;585(18):2803-9 - PubMed
  42. Annu Rev Biochem. 2017 Jun 20;86:193-224 - PubMed
  43. Biochem Biophys Res Commun. 2006 Jun 9;344(3):1008-16 - PubMed
  44. Biochem Pharmacol. 2012 Apr 15;83(8):1033-40 - PubMed
  45. Acta Biochim Pol. 2006;53(3):569-76 - PubMed
  46. J Biol Chem. 2000 May 26;275(21):16023-9 - PubMed
  47. Nat Chem Biol. 2011 Dec 25;8(2):185-96 - PubMed
  48. Mol Cell. 2005 Mar 4;17(5):645-55 - PubMed
  49. J Med Chem. 2020 Mar 12;63(5):1892-1907 - PubMed

Publication Types

Grant support