Display options
Share it on

Phys Chem Chem Phys. 2021 Sep 29;23(37):20883-20891. doi: 10.1039/d1cp02502c.

Dipolar repulsion in α-halocarbonyl compounds revisited.

Physical chemistry chemical physics : PCCP

Daniela Rodrigues Silva, Lucas de Azevedo Santos, Trevor A Hamlin, F Matthias Bickelhaupt, Matheus P Freitas, Célia Fonseca Guerra

Affiliations

  1. Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. [email protected].
  2. Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil. [email protected].
  3. Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
  4. Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.

PMID: 34528039 PMCID: PMC8479779 DOI: 10.1039/d1cp02502c

Abstract

The concept of dipolar repulsion has been widely used to explain several phenomena in organic chemistry, including the conformational preferences of carbonyl compounds. This model, in which atoms and bonds are viewed as point charges and dipole moment vectors, respectively, is however oversimplified. To provide a causal model rooted in quantitative molecular orbital theory, we have analyzed the rotational isomerism of haloacetaldehydes OHC-CH

References

  1. J Chem Theory Comput. 2014 Oct 14;10(10):4432-41 - PubMed
  2. J Org Chem. 2014 Feb 21;79(4):1571-81 - PubMed
  3. Chemistry. 2006 Dec 13;12(36):9196-216 - PubMed
  4. Chem Soc Rev. 2014 Jul 21;43(14):4953-67 - PubMed
  5. J Chem Phys. 2010 Apr 21;132(15):154104 - PubMed
  6. J Chem Phys. 2005 Jul 8;123(2):24101 - PubMed
  7. Proc Natl Acad Sci U S A. 1951 Apr;37(4):205-11 - PubMed
  8. J Phys Chem A. 2014 Aug 7;118(31):5743-7 - PubMed
  9. J Phys Chem A. 2008 Mar 20;112(11):2437-46 - PubMed
  10. Nat Chem. 2010 Aug;2(8):666-71 - PubMed
  11. J Comput Chem. 2004 Jan 30;25(2):189-210 - PubMed
  12. J Org Chem. 2021 Jun 4;86(11):7701-7713 - PubMed
  13. Nature. 1953 Apr 25;171(4356):737-8 - PubMed
  14. Beilstein J Org Chem. 2017 Dec 29;13:2915-2921 - PubMed
  15. Chemistry. 2005 Mar 4;11(6):1813-25 - PubMed
  16. Acc Chem Res. 2017 Aug 15;50(8):1838-1846 - PubMed
  17. J Comput Chem. 2003 Jul 15;24(9):1142-56 - PubMed
  18. J Comput Chem. 2008 Jan 30;29(2):312-5 - PubMed
  19. J Comput Chem. 2013 Aug 5;34(21):1819-27 - PubMed
  20. Chemistry. 2020 Dec 1;26(67):15690-15699 - PubMed
  21. Beilstein J Org Chem. 2017 Aug 24;13:1781-1787 - PubMed
  22. Angew Chem Int Ed Engl. 2003 Sep 15;42(35):4183-8; discussion 4188-94 - PubMed
  23. J Mol Model. 2008 Aug;14(8):659-65 - PubMed
  24. J Comput Chem. 2019 Sep 30;40(25):2227-2233 - PubMed
  25. Org Biomol Chem. 2010 Jul 21;8(14):3118-27 - PubMed
  26. Chemphyschem. 2021 Apr 7;22(7):641-648 - PubMed
  27. Phys Rev B Condens Matter. 1986 Jun 15;33(12):8822-8824 - PubMed
  28. Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14602-14608 - PubMed
  29. Wiley Interdiscip Rev Comput Mol Sci. 2015 Jul;5(4):324-343 - PubMed
  30. J Comput Chem. 2011 May;32(7):1456-65 - PubMed
  31. Nat Protoc. 2020 Feb;15(2):649-667 - PubMed
  32. Acc Chem Res. 2007 Feb;40(2):113-9 - PubMed
  33. Proc Natl Acad Sci U S A. 1951 Nov;37(11):729-40 - PubMed
  34. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 - PubMed
  35. J Chem Theory Comput. 2014 May 13;10(5):1994-2004 - PubMed
  36. Angew Chem Int Ed Engl. 2015 Jul 27;54(31):8880-94 - PubMed
  37. Angew Chem Int Ed Engl. 2017 Aug 14;56(34):10070-10086 - PubMed
  38. Angew Chem Int Ed Engl. 2004 Apr 2;43(15):1986-90 - PubMed
  39. J Org Chem. 2018 May 4;83(9):5242-5255 - PubMed
  40. J Am Chem Soc. 2019 Mar 27;141(12):4878-4885 - PubMed

Publication Types