Display options
Share it on

Plant Physiol. 2021 Nov 03;187(3):1534-1550. doi: 10.1093/plphys/kiab348.

A genetic approach reveals different modes of action of prefoldins.

Plant physiology

Noel Blanco-Touriñán, David Esteve-Bruna, Antonio Serrano-Mislata, Rosa María Esquinas-Ariza, Francesca Resentini, Javier Forment, Cristian Carrasco-López, Claudio Novella-Rausell, Alberto Palacios-Abella, Pedro Carrasco, Julio Salinas, Miguel Á Blázquez, David Alabadí

Affiliations

  1. Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain.
  2. Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
  3. Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain.
  4. Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain.

PMID: 34618031 PMCID: PMC8566299 DOI: 10.1093/plphys/kiab348

Abstract

The prefoldin complex (PFDc) was identified in humans as a co-chaperone of the cytosolic chaperonin T-COMPLEX PROTEIN RING COMPLEX (TRiC)/CHAPERONIN CONTAINING TCP-1 (CCT). PFDc is conserved in eukaryotes and is composed of subunits PFD1-6, and PFDc-TRiC/CCT folds actin and tubulins. PFDs also participate in a wide range of cellular processes, both in the cytoplasm and in the nucleus, and their malfunction causes developmental alterations and disease in animals and altered growth and environmental responses in yeast and plants. Genetic analyses in yeast indicate that not all of their functions require the canonical complex. The lack of systematic genetic analyses in plants and animals, however, makes it difficult to discern whether PFDs participate in a process as the canonical complex or in alternative configurations, which is necessary to understand their mode of action. To tackle this question, and on the premise that the canonical complex cannot be formed if one subunit is missing, we generated an Arabidopsis (Arabidopsis thaliana) mutant deficient in the six PFDs and compared various growth and environmental responses with those of the individual mutants. In this way, we demonstrate that the PFDc is required for seed germination, to delay flowering, or to respond to high salt stress or low temperature, whereas at least two PFDs redundantly attenuate the response to osmotic stress. A coexpression analysis of differentially expressed genes in the sextuple mutant identified several transcription factors, including ABA INSENSITIVE 5 (ABI5) and PHYTOCHROME-INTERACTING FACTOR 4, acting downstream of PFDs. Furthermore, the transcriptomic analysis allowed assigning additional roles for PFDs, for instance, in response to higher temperature.

© The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.

References

  1. Protein Sci. 2002 Feb;11(2):430-48 - PubMed
  2. Front Plant Sci. 2016 Dec 16;7:1884 - PubMed
  3. J Biol Chem. 2001 Nov 30;276(48):45137-44 - PubMed
  4. Nature. 2012 Mar 21;484(7393):242-245 - PubMed
  5. Cell. 2019 Apr 18;177(3):751-765.e15 - PubMed
  6. Mol Cells. 2016 Aug 31;39(8):587-93 - PubMed
  7. Sci Rep. 2018 Sep 12;8(1):13712 - PubMed
  8. Cell. 1998 May 29;93(5):863-73 - PubMed
  9. Nat Plants. 2016 Jan 06;2:15190 - PubMed
  10. Oncogene. 2017 Feb 16;36(7):885-898 - PubMed
  11. Nucleic Acids Res. 2012 Jan;40(Database issue):D1211-5 - PubMed
  12. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3716-3721 - PubMed
  13. EMBO J. 1998 Feb 16;17(4):952-66 - PubMed
  14. Cell. 2000 Nov 10;103(4):621-32 - PubMed
  15. J Cell Biol. 1993 Sep;122(6):1301-10 - PubMed
  16. Oncogene. 2019 Jun;38(24):4739-4754 - PubMed
  17. Nucleic Acids Res. 2018 Apr 6;46(6):e31 - PubMed
  18. Nat Rev Mol Cell Biol. 2004 May;5(5):410-5 - PubMed
  19. EMBO J. 2002 Dec 2;21(23):6377-86 - PubMed
  20. Mol Plant. 2018 Jul 2;11(7):928-942 - PubMed
  21. Mol Plant. 2009 May;2(3):526-34 - PubMed
  22. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5729-34 - PubMed
  23. Genes Dev. 2018 Dec 1;32(23-24):1562-1575 - PubMed
  24. J Exp Bot. 2019 Jan 1;70(1):17-27 - PubMed
  25. Nat Plants. 2019 Mar;5(3):316-327 - PubMed
  26. Plant J. 2001 Jul;27(1):1-12 - PubMed
  27. Sci Rep. 2017 Aug 22;7(1):9148 - PubMed
  28. J Biol Chem. 2011 Jan 7;286(1):726-36 - PubMed
  29. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5 - PubMed
  30. PLoS Genet. 2013;9(9):e1003776 - PubMed
  31. Plant J. 2004 Sep;39(6):920-32 - PubMed
  32. Mol Plant. 2009 Jul;2(4):565-577 - PubMed
  33. Plant J. 2010 Jul;63(2):229-40 - PubMed
  34. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):18064-9 - PubMed
  35. Cell Biosci. 2020 Jul 20;10:87 - PubMed
  36. PLoS Genet. 2012;8(3):e1002594 - PubMed
  37. Mol Plant. 2017 Jun 5;10(6):791-804 - PubMed
  38. PLoS One. 2007 Aug 08;2(8):e718 - PubMed
  39. J Biol Chem. 2001 Dec 7;276(49):46562-7 - PubMed
  40. Plant Physiol. 1997 May;114(1):295-305 - PubMed
  41. Curr Biol. 2009 Mar 10;19(5):408-13 - PubMed
  42. Dev Biol. 2008 Jan 1;313(1):320-34 - PubMed
  43. Nucleic Acids Res. 2021 Jun 21;49(11):6267-6280 - PubMed
  44. Adv Exp Med Biol. 2018;1106:95-108 - PubMed
  45. Nat Protoc. 2015 Jan;10(1):169-87 - PubMed
  46. Protein Sci. 2008 Nov;17(11):1881-93 - PubMed
  47. EMBO J. 1999 Jan 4;18(1):75-84 - PubMed
  48. Cell. 2010 Apr 30;141(3):550, 550.e1-2 - PubMed
  49. New Phytol. 2012 Aug;195(3):707-720 - PubMed
  50. Nucleic Acids Res. 2020 Jun 19;48(11):6280-6293 - PubMed
  51. Plant Cell. 2001 Jul;13(7):1555-66 - PubMed
  52. Biochim Biophys Acta Gene Regul Mech. 2017 Jul;1860(7):773-781 - PubMed
  53. Adv Exp Med Biol. 2018;1106:119-131 - PubMed
  54. Curr Biol. 2013 May 6;23(9):804-9 - PubMed
  55. Int J Mol Sci. 2019 Sep 17;20(18): - PubMed

Publication Types

Grant support