Display options
Share it on

J Cosmet Dermatol. 2021 Oct 07; doi: 10.1111/jocd.14385. Epub 2021 Oct 07.

A critical review on the potential role of adipose-derived stem cells for future treatment of hypertrophic scars.

Journal of cosmetic dermatology

Karina Teja Putri, Theddeus Octavianus Hari Prasetyono

Affiliations

  1. Undergraduate Study Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
  2. Division of Plastic Surgery, Department of Surgery, Cipto Mangunkusumo Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.

PMID: 34619011 DOI: 10.1111/jocd.14385

Abstract

INTRODUCTION: Adipose-derived stem cells (ASCs) have recently gained researchers' interest as a solution to various diseases and conditions, including hypertrophic scar. This literature review aims to elucidate ASCs as a potential solution to alleviate hypertrophic scar in human subjects.

METHODS: Literature search was done in databases which includes PubMed, MEDLINE, and ProQuest using terms 'adipose derived stem cells', 'adipose cells', 'fat graft', 'fat grafting', 'autologous fat graft', 'fat injection', 'lipofilling', 'scar management', 'scar treatment', 'burn scar', and 'wound management'. The included articles which were published during year 2000-November 2020 must describe the use of ASCs or fat grafting or lipofilling as an attempt to alleviate hypertrophic scar.

REMARKS: Clinically, ASCs improve hypertrophic scars in terms of scar color, elasticity, texture, thickness, and size. Histologically, ASCs promotes healthy tissue regeneration, reduction in fibroblasts, and reorganisation of collagen, resembling those of normal skin. In terms of molecular aspects, ASCs alleviates hypertrophic scars through direct differentiation and paracrine mechanisms.

CONCLUSION: Adipose-derived stem cells, emerge to be a potential solution for alleviating hypertrophic scar, as demonstrated in various studies. However, there has been no studies conducted in human subjects to investigate the effect of ASCs on hypertrophic scar.

© 2021 Wiley Periodicals LLC.

Keywords: adipocytes; cicatrix; fibroblast; intercellular signaling peptides and proteins; stem cells

References

  1. Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet. 2016;338(10052):1427-1436. https://doi.org/10.1016/S0140-6736(16)31406-4 - PubMed
  2. Cheng JZ, Farrokhi A, Ghahary A, Jalili RB. Therapeutic use of stem cells in treatment of burn injuries. J Burn Care Res. 2018;39(2):175-182. https://doi.org/10.1097/BCR.0000000000000571 - PubMed
  3. World Health Organization. Burns: World Health Organization; 2018. Available from https://www.who.int/news-room/fact-sheets/detail/burns - PubMed
  4. United Nations (2004) review and appraisal of the progress made in achieving the goals and objectives of the programme of action of the international conference on population and development the 2004 report. United Nations. Available from: http://www.un.org/esa/population/publications/reviewappraisal/English.pdf - PubMed
  5. United Nations (2019) World population prospects 2019. Department of Economic And Social Affairs United Nations. Available from http://www.ncbi.nlm.nih.gov/pubmed/12283219 - PubMed
  6. Butzelaar L, Ulrich MMW, Mink Van Der Molen AB, Niessen FB, Beelen RHJ. Currently known risk factors for hypertrophic skin scarring: a review. J Plast Reconstr Aesthet Surg. 2016;69(2):163-169. https://doi.org/10.1016/j.bjps.2015.11.015 - PubMed
  7. Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care. 2018;7(2):29-45. https://doi.org/10.1089/wound.2016.0696 - PubMed
  8. Lian N, Li T. Growth factor pathways in hypertrophic scars: molecular pathogenesis and therapeutic implications. Biomed Pharmacother. 2016;84:42-50. https://doi.org/10.1016/j.biopha.2016.09.010 - PubMed
  9. Zhu Z, Ding J, Tredget EE. The molecular basis of hypertrophic scars. Burns Trauma. 2016;4(1):1-12. https://doi.org/10.1186/s41038-015-0026-4 - PubMed
  10. Xu X, Lai L, Zhang X, et al. Autologous chyle fat grafting for the treatment of hypertrophic scars and scar-related conditions. Stem Cell Res Ther. 2018;9(1):1-8. https://doi.org/10.1186/s13287-018-0782-8 - PubMed
  11. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2(1):18-28. - PubMed
  12. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-β)? Br J Plast Surg. 2004;57(3):215-221. https://doi.org/10.1016/j.bjps.2003.12.012 - PubMed
  13. Wang R, Ghahary A, Shen Q, Scott PG, Roy K, Tredget EE. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-β1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8(2):128-137. https://doi.org/10.1046/j.1524-475X.2000.00128.x - PubMed
  14. Liu Y, Li Y, Li N, et al. TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci Rep. 2016;6(1):1-9. https://doi.org/10.1038/srep32231 - PubMed
  15. Schmid P, Itin P, Cherry G, Bi C, Cox DA. Enhanced expression of transforming growth factor-β type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol. 1998;152(2):485-493. - PubMed
  16. Lu L, Saulis AS, Liu WR, et al. The temporal effects of anti-TGF-β1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201(3):391-397. https://doi.org/10.1016/j.jamcollsurg.2005.03.032 - PubMed
  17. Kopp J, Preis E, Said H, et al. Abrogation of transforming growth factor-β signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem. 2005;280(22):21570-21576. https://doi.org/10.1074/jbc.M502071200 - PubMed
  18. Xie JL, Qi SH, Pan S, et al. Expression of smad protein by normal skin fibroblasts and hypertrophic scar fibroblasts in response to transforming growth factor β1. Dermatol Surg. 2008;34(9):1216-1225. https://doi.org/10.1111/j.1524-4725.2008.34261.x - PubMed
  19. Nava MM, Raimondi MT, Pietrabissa R. Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol. 2012;2012:1-12. https://doi.org/10.1155/2012/797410 - PubMed
  20. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:1-6. https://doi.org/10.1155/2015/628767 - PubMed
  21. Alonso-Goulart V, Ferreira LB, Duarte CA, et al. Mesenchymal stem cells from human adipose tissue and bone repair: a literature review. Biotechnol Res Innov. 2018;2(1):74-80. https://doi.org/10.1016/j.biori.2017.10.005 - PubMed
  22. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. https://doi.org/10.1080/14653240600855905 - PubMed
  23. Lakshmi Kanth K, Sanivarapu S, Moogla S, Kutcham RS. Adipose tissue - adequate, accessible regenerative material. Int J Stem Cells. 2015;8(2):121-127. https://doi.org/10.15283/ijsc.2015.8.2.121 - PubMed
  24. Brongo S, Nicoletti GF, La Padula S, Mele CM, D'Andrea F. Use of lipofilling for the treatment of severe burn outcomes. Plast Reconstr Surg. 2012;130(2):374e-376e. https://doi.org/10.1097/PRS.0b013e3182590387 - PubMed
  25. Bruno A, Santi GD, Fasciani L, Cempanari M, Palombo M, Palombo P. Burn scar lipofilling: immunohistochemical and clinical outcomes. J Craniofac Surg. 2013;24(5):1806-1814. https://doi.org/10.1097/SCS.0b013e3182a148b9 - PubMed
  26. Byrne M, O'Donnell M, Fitzgerald L, Shelley OP. Early experience with fat grafting as an adjunct for secondary burn reconstruction in the hand: technique, hand function assessment and aesthetic outcomes. Burns. 2016;42(2):356-365. https://doi.org/10.1016/j.burns.2015.06.017 - PubMed
  27. Klinger M, Marazzi M, Vigo D, Torre M. Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction. Aesth Plast Surg. 2008;32:465-469. https://doi.org/10.1007/s00266-008-9122-1 - PubMed
  28. Mazzola IC, Cantarella G, Mazzola RF. Management of tracheostomy scar by autologous fat transplantation: a minimally invasive new approach. J Craniofac Surg. 2013;24(4):1361-1364. https://doi.org/10.1097/SCS.0b013e318292c1a4 - PubMed
  29. Wu M, Ji S, Xiao S, et al. JAM-A promotes wound healing by enhancing both homing and secretory activities of mesenchymal stem cells. Clin Sci. 2015;129(7):575-588. https://doi.org/10.1042/CS20140735 - PubMed
  30. Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res. 2008;26(10):1407-1412. https://doi.org/10.1002/jor.20668 - PubMed
  31. Zhang B, Luo Q, Halim A, Ju Y, Morita Y, Song G. Directed differentiation and paracrine mechanisms of mesenchymal stem cells: potential implications for tendon repair and regeneration. Curr Stem Cell Res Ther. 2017;12(6):447-454. https://doi.org/10.2174/1574888x12666170502102423 - PubMed
  32. Seo BF, Jung SN. The immunomodulatory effects of mesenchymal stem cells in prevention or treatment of excessive scars. Stem Cells Int. 2016;2016:1-8. https://doi.org/10.1155/2016/6937976 - PubMed
  33. Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006;119(3):229-240. https://doi.org/10.1016/j.clim.2006.01.016 - PubMed
  34. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. Haematologica. 2013;98(9):e121. https://doi.org/10.3324/haematol.2013.093864 - PubMed
  35. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev in Immunol. 2012;32(1):23-63. https://doi.org/10.1615/critrevimmunol.v32.i1.30 - PubMed
  36. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66(2):121-127. https://doi.org/10.1203/PDR.0b013e3181a9eafb - PubMed
  37. Muriel P. Regulation of nitric oxide synthesis in the liver. J Appl Toxicol. 2000;20(3):189-195. https://doi.org/10.1002/(SICI)1099-1263(200005/06)20:3<189:AID-JAT632>3.0.CO;2-8 - PubMed
  38. Kumar A, Tripathy M. Nitric oxide: a small molecule with diversifying impacts. J Biomed Sci. 2012;1(3):1-2. https://doi.org/10.3823/1007 - PubMed
  39. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. P Jpn Acad B-Phys. 2010;86(6):588-610. https://doi.org/10.2183/pjab.86.588 - PubMed
  40. Mou S, Wang Q, Shi B, Gu L, Ni Z. Hepatocyte growth factor suppresses transforming growth factor-beta-1 and type III collagen in human primary renal fibroblasts. Kaohsiung J Med Sci. 2009;25(11):577-587. https://doi.org/10.1016/S1607-551X(09)70560-1 - PubMed
  41. Loffek S, Schilling O, Franzke C-W. Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191-208. https://doi.org/10.1183/09031936.00146510 - PubMed
  42. Yun IS, Jeon YR, Lee WJ, et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg. 2012;38(1):1678-1688. https://doi.org/10.1111/j.1524-4725.2012.02495.x - PubMed
  43. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2016;6(620):1-12. https://doi.org/10.3389/fimmu.2015.00620 - PubMed

Publication Types

Grant support