Display options
Share it on

NPJ Vaccines. 2020 Oct 08;5(1):92. doi: 10.1038/s41541-020-00242-y.

Discovery of four new B-cell protective epitopes for malaria using Q beta virus-like particle as platform.

NPJ vaccines

Erwan Atcheson, Gustavo Cabral-Miranda, Ahmed M Salman, Arturo Reyes-Sandoval

Affiliations

  1. The Jenner Institute, University of Oxford, Oxford, UK.
  2. The Jenner Institute, University of Oxford, Oxford, UK. [email protected].

PMID: 34620882 DOI: 10.1038/s41541-020-00242-y

Abstract

Malaria remains one of the world's most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qβ) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qβ VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qβ. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.

© 2020. The Author(s).

References

  1. World Health Organization (WHO). World Malaria Report 2019. (2019). - PubMed
  2. R. T. S., S. Clinical Trials Partnership et al. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 11, e1001685 (2014). - PubMed
  3. Bennett, J. W. et al. Phase 1/2a Trial of plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLoS Negl. Trop. Dis. 10, e0004423 (2016). - PubMed
  4. Herrington, D. A. et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature 328, 257–259 (1987). - PubMed
  5. Nardin, E. H. et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J. Infect. Dis. 182, 1486–1496 (2000). - PubMed
  6. Kumar, K. A., Oliveira, G. A., Edelman, R., Nardin, E. & Nussenzweig, V. Quantitative Plasmodium sporozoite neutralization assay (TSNA). J. Immunol. Methods 292, 157–164 (2004). - PubMed
  7. Collins, W. E. et al. Protective immunity induced in squirrel monkeys with a multiple antigen construct against the circumsporozoite protein of Plasmodium vivax. Am. J. Trop. Med. Hyg. 56, 200–210 (1997). - PubMed
  8. Yang, C. et al. Induction of protective antibodies in Saimiri monkeys by immunization with a multiple antigen construct (MAC) containing the Plasmodium vivax circumsporozoite protein repeat region and a universal T helper epitope of tetanus toxin. Vaccine 15, 377–386 (1997). - PubMed
  9. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010). - PubMed
  10. Khusmith, S., Sedegah, M. & Hoffman, S. L. Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. Infect. Immun. 62, 2979–2983 (1994). - PubMed
  11. Reyes-Sandoval, A. et al. CD8+ T effector memory cells protect against liver-stage malaria. J. Immunol. 187, 1347–1357 (2011). - PubMed
  12. Ewer, K. J. et al. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat. Commun. 4, 2836 (2013). - PubMed
  13. Ogwang, C. et al. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults. Sci. Transl. Med. 7, 286re5–286re5 (2015). - PubMed
  14. Spaccapelo, R., Naitza, S., Robson, K. J. & Crisanti, A. Thrombospondin-related adhesive protein (TRAP) of Plasmodium berghei and parasite motility. Lancet 350, 335 (1997). - PubMed
  15. Rogers, W. O. et al. Characterization of Plasmodium falciparum sporozoite surface protein 2. Proc. Natl Acad. Sci. USA 89, 9176–9180 (1992). - PubMed
  16. Gantt, S. et al. Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infect. Immun. 68, 3667–3673 (2000). - PubMed
  17. Bauza, K. et al. Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites. Infect. Immun. 82, 1277–1286 (2014). - PubMed
  18. Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007). - PubMed
  19. Swearingen, K. E. et al. Interrogating the Plasmodium Sporozoite surface: identification of surface-exposed proteins and demonstration of glycosylation on CSP and TRAP by mass spectrometry-based proteomics. PLoS Pathog. 12, e1005606 (2016). - PubMed
  20. Atcheson, E., Bauza, K. & Reyes-Sandoval, A. A probabilistic model of pre-erythrocytic malaria vaccine combination in mice. PLoS ONE 14, e0209028 (2019). - PubMed
  21. Bauza, K., Atcheson, E., Malinauskas, T., Blagborough, A. M. & Reyes-Sandoval, A. Tailoring a combination preerythrocytic malaria vaccine. Infect. Immun. 84, 622–634 (2016). - PubMed
  22. Atcheson, E. et al. Tailoring a plasmodium vivax vaccine to enhance efficacy through a combination of a CSP virus-like particle and TRAP viral vectors. Infect. Immun. 86, S9 (2018). - PubMed
  23. Nixon, C. E. et al. Identification of protective B-cell epitopes within the novel malaria vaccine candidate plasmodium falciparum schizont egress antigen 1. Clin. Vaccin. Immunol. 24, e00068–17 (2017). - PubMed
  24. Song, G., Koksal, A. C., Lu, C. & Springer, T. A. Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc. Natl Acad. Sci. USA 109, 21420–21425 (2012). - PubMed
  25. Guy, A. J. et al. Insights into the immunological properties of intrinsically disordered malaria proteins using proteome scale predictions. PLoS ONE 10, e0141729 (2015). - PubMed
  26. Charoenvit, Y. et al. Development of two monoclonal antibodies against Plasmodium falciparum sporozoite surface protein 2 and mapping of B-cell epitopes. Infect. Immun. 65, 3430–3437 (1997). - PubMed
  27. Atcheson, E. & Reyes-Sandoval, A. Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein. Vaccine 38, 4346–4354 (2020). - PubMed
  28. Gomes, A. C. et al. Adjusted particle size eliminates the need of linkage of antigen and adjuvants for appropriated T cell responses in virus-like particle-based vaccines. Front Immunol. 8, 226 (2017). - PubMed
  29. Müller, H. M. et al. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO J. 12, 2881–2889 (1993). - PubMed
  30. Cerami, C. et al. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–1033 (1992). - PubMed
  31. Frevert, U. et al. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J. Exp. Med. 177, 1287–1298 (1993). - PubMed
  32. Tewari, R., Spaccapelo, R., Bistoni, F., Holder, A. A. & Crisanti, A. Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J. Biol. Chem. 277, 47613–47618 (2002). - PubMed
  33. Chatterjee, S., Wery, M., Sharma, P. & Chauhan, V. S. A conserved peptide sequence of the Plasmodium falciparum circumsporozoite protein and antipeptide antibodies inhibit Plasmodium berghei sporozoite invasion of Hep-G2 cells and protect immunized mice against P. berghei sporozoite challenge. Infect. Immun. 63, 4375–4381 (1995). - PubMed
  34. Bongfen, S. E. et al. The N-terminal domain of Plasmodium falciparum circumsporozoite protein represents a target of protective immunity. Vaccine 27, 328–335 (2009). - PubMed
  35. Ballou, W. R. et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228, 996–999 (1985). - PubMed
  36. Gantt, S. M., Clavijo, P., Bai, X., Esko, J. D. & Sinnis, P. Cell adhesion to a motif shared by the malaria circumsporozoite protein and thrombospondin is mediated by its glycosaminoglycan-binding region and not by CSVTCG. J. Biol. Chem. 272, 19205–19213 (1997). - PubMed
  37. Rao, K. V. Selection in a T-dependent primary humoral response: new insights from polypeptide models. APMIS 107, 807–818 (1999). - PubMed
  38. Collins, K. A., Snaith, R., Cottingham, M. G., Gilbert, S. C. & Hill, A. V. S. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci. Rep. 7, 46621 (2017). - PubMed
  39. Aricescu, A. R., Lu, W. & Jones, E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D. Biol. Crystallogr 62, 1243–1250 (2006). - PubMed
  40. Grangeot-Keros, L. et al. Value of cytomegalovirus (CMV) IgG avidity index for the diagnosis of primary CMV infection in pregnant women. J. Infect. Dis. 175, 944–946 (1997). - PubMed
  41. Groat-Carmona, A. M. et al. A Plasmodium α/β-hydrolase modulates the development of invasive stages. Cell. Microbiol. 17, 1848–1867 (2015). - PubMed
  42. Harupa, A. et al. SSP3 is a novel Plasmodium yoelii sporozoite surface protein with a role in gliding motility. Infect. Immun. 82, 4643–4653 (2014). - PubMed
  43. Siau, A. et al. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection. PLoS Pathog. 4, e1000121 (2008). - PubMed
  44. Engelmann, S., Silvie, O. & Matuschewski, K. Disruption of Plasmodium sporozoite transmission by depletion of sporozoite invasion-associated protein 1. Eukaryot. Cell 8, 640–648 (2009). - PubMed
  45. Kappe, S. H., Noe, A. R., Fraser, T. S., Blair, P. L. & Adams, J. H. A family of chimeric erythrocyte binding proteins of malaria parasites. Proc. Natl Acad. Sci. USA 95, 1230–1235 (1998). - PubMed
  46. Ghai, M., Dutta, S., Hall, T., Freilich, D. & Ockenhouse, C. F. Identification, expression, and functional characterization of MAEBL, a sporozoite and asexual blood stage chimeric erythrocyte-binding protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 123, 35–45 (2002). - PubMed
  47. Preiser, P. et al. Antibodies against MAEBL ligand domains M1 and M2 inhibit sporozoite development in vitro. Infect. Immun. 72, 3604–3608 (2004). - PubMed
  48. Peng, K. et al. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cell. Microbiol. 18, 1739–1750 (2016). - PubMed
  49. Yang, A. S. P. et al. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell. Microbiol. 19, e12745 (2017). - PubMed
  50. Alexander, D. L., Arastu-Kapur, S., Dubremetz, J.-F. & Boothroyd, J. C. Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryot. Cell 5, 1169–1173 (2006). - PubMed
  51. Giovannini, D. et al. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. Cell Host Microbe 10, 591–602 (2011). - PubMed
  52. Sanders, P. R. et al. Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. J. Biol. Chem. 280, 40169–40176 (2005). - PubMed
  53. Offeddu, V., Rauch, M., Silvie, O. & Matuschewski, K. The Plasmodium protein P113 supports efficient sporozoite to liver stage conversion in vivo. Mol. Biochem. Parasitol. 193, 101–109 (2014). - PubMed
  54. Kaiser, K. et al. A member of a conserved Plasmodium protein family with membrane-attack complex/perforin (MACPF)-like domains localizes to the micronemes of sporozoites. Mol. Biochem. Parasitol. 133, 15–26 (2004). - PubMed
  55. Ishino, T., Chinzei, Y. & Yuda, M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7, 199–208 (2005). - PubMed
  56. Yuda, M. & Ishino, T. Liver invasion by malarial parasites-how do malarial parasites break through the host barrier? Cell. Microbiol. 6, 1119–1125 (2004). - PubMed
  57. Yang, A. S. P. et al. Cell traversal activity is important for Plasmodium falciparum liver infection in humanized mice. Cell Rep. 18, 3105–3116 (2017). - PubMed
  58. Ito, D. et al. Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is localized to the rhoptry body. Parasitol. Int. 60, 132–138 (2011). - PubMed
  59. Pandey, K. C., Singh, N., Arastu-Kapur, S., Bogyo, M. & Rosenthal, P. J. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2, e117 (2006). - PubMed
  60. Rennenberg, A. et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 6, e1000825 (2010). - PubMed
  61. Boysen, K. E. & Matuschewski, K. Inhibitor of cysteine proteases is critical for motility and infectivity of Plasmodium sporozoites. MBio. 4, e00874–13 (2013). - PubMed
  62. Lehmann, C. et al. A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development. PLoS Pathog. 10, e1004336 (2014). - PubMed
  63. Kaiser, K., Matuschewski, K., Camargo, N., Ross, J. & Kappe, S. H. I. Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol. Microbiol. 51, 1221–1232 (2004). - PubMed
  64. Labaied, M., Camargo, N. & Kappe, S. H. I. Depletion of the Plasmodium berghei thrombospondin-related sporozoite protein reveals a role in host cell entry by sporozoites. Mol. Biochem. Parasitol. 153, 158–166 (2007). - PubMed

Publication Types

Grant support