Display options
Share it on

J Virol. 2021 Nov 23;95(24):e0059621. doi: 10.1128/JVI.00596-21. Epub 2021 Sep 29.

Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication.

Journal of virology

Byron Shue, Abhilash I Chiramel, Berati Cerikan, Thu-Hien To, Sonja Frölich, Stephen M Pederson, Emily N Kirby, Nicholas S Eyre, Ralf F W Bartenschlager, Sonja M Best, Michael R Beard

Affiliations

  1. Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaidegrid.1010.0, Adelaide, Australia.
  2. Rocky Mountain Laboratories, National Institutes of Health (NIH), Hamilton, Montana, USA.
  3. Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, 69120 Germany.
  4. Bioinformatics Hub, The University of Adelaidegrid.1010.0, Adelaide, Australia.

PMID: 34586867 PMCID: PMC8610583 DOI: 10.1128/JVI.00596-21

Abstract

Cellular factors have important roles in all facets of the flavivirus replication cycle. Deciphering viral-host protein interactions is essential for understanding the flavivirus life cycle as well as development of effective antiviral strategies. To uncover novel host factors that are co-opted by multiple flaviviruses, a CRISPR/Cas9 genome wide knockout (KO) screen was employed to identify genes required for replication of Zika virus (ZIKV). Receptor for Activated Protein C Kinase 1 (RACK1) was identified as a novel host factor required for ZIKV replication, which was confirmed via complementary experiments. Depletion of RACK1 via siRNA demonstrated that RACK1 is important for replication of a wide range of mosquito- and tick-borne flaviviruses, including West Nile Virus (WNV), Dengue Virus (DENV), Powassan Virus (POWV) and Langat Virus (LGTV) as well as the coronavirus SARS-CoV-2, but not for YFV, EBOV, VSV or HSV. Notably, flavivirus replication was only abrogated when RACK1 expression was dampened prior to infection. Utilising a non-replicative flavivirus model, we show altered morphology of viral replication factories and reduced formation of vesicle packets (VPs) in cells lacking RACK1 expression. In addition, RACK1 interacted with NS1 protein from multiple flaviviruses; a key protein for replication complex formation. Overall, these findings reveal RACK1's crucial role to the biogenesis of pan-flavivirus replication organelles.

Keywords: ZIKV; crispr; flavivirus; host factor; organelle; screen; viral replication

References

  1. PLoS Pathog. 2018 Sep 27;14(9):e1007299 - PubMed
  2. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9527-9532 - PubMed
  3. Development. 2017 Nov 15;144(22):4114-4124 - PubMed
  4. Cell Host Microbe. 2011 Jan 20;9(1):32-45 - PubMed
  5. Annu Rev Virol. 2015 Nov;2(1):289-310 - PubMed
  6. Cell Rep. 2019 Jun 11;27(11):3269-3283.e6 - PubMed
  7. Cell Rep. 2016 Jun 28;16(1):232-246 - PubMed
  8. PLoS Pathog. 2019 May 9;15(5):e1007736 - PubMed
  9. J Neurovirol. 2014 Dec;20(6):539-60 - PubMed
  10. PLoS Pathog. 2019 Sep 16;15(9):e1008021 - PubMed
  11. NPJ Vaccines. 2016 Jul 28;1:16007 - PubMed
  12. Cytometry A. 2020 Apr;97(4):378-393 - PubMed
  13. Histopathology. 2021 Feb;78(3):358-370 - PubMed
  14. J Infect Dis. 2018 Nov 22;218(suppl_5):S397-S402 - PubMed
  15. Sci Rep. 2018 Feb 14;8(1):2985 - PubMed
  16. Pathogens. 2019 Sep 12;8(3): - PubMed
  17. Methods Mol Biol. 2013;1030:205-19 - PubMed
  18. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  19. Bioinformatics. 2016 Feb 15;32(4):632-4 - PubMed
  20. J Proteomics. 2015 Apr 24;119:45-60 - PubMed
  21. Nature. 2016 Jul 7;535(7610):159-63 - PubMed
  22. Nat Microbiol. 2018 Nov;3(11):1214-1223 - PubMed
  23. PLoS Med. 2016 Nov 29;13(11):e1002182 - PubMed
  24. Virology. 2001 Apr 25;283(1):7-18 - PubMed
  25. Virus Res. 2018 Aug 2;254:34-40 - PubMed
  26. J Virol. 2005 Mar;79(5):3187-94 - PubMed
  27. mBio. 2016 Feb 09;7(1):e01956-15 - PubMed
  28. Cell. 2014 Nov 20;159(5):1086-1095 - PubMed
  29. BMC Res Notes. 2009 Dec 10;2:243 - PubMed
  30. Cell Microbiol. 2018 Aug;20(8):e12884 - PubMed
  31. Trends Microbiol. 2020 Dec;28(12):1022-1033 - PubMed
  32. Cell Microbiol. 2012 May;14(5):774-89 - PubMed
  33. Cell Commun Signal. 2011 Oct 06;9:22 - PubMed
  34. Nat Protoc. 2017 Apr;12(4):828-863 - PubMed
  35. J Infect Dis. 2014 Feb 1;209(3):334-44 - PubMed
  36. Nat Microbiol. 2019 Dec;4(12):2416-2429 - PubMed
  37. Virology. 2020 Jun;545:53-62 - PubMed
  38. Cell Rep. 2015 Jul 28;12(4):673-83 - PubMed
  39. J Cell Biol. 2020 Feb 3;219(2): - PubMed
  40. Cell Rep. 2018 Jan 30;22(5):1364 - PubMed
  41. Cell Rep. 2019 May 7;27(6):1666-1674.e4 - PubMed
  42. Nature. 2016 Jul 7;535(7610):164-8 - PubMed
  43. Cell Rep. 2017 Nov 7;21(6):1639-1654 - PubMed
  44. J Virol. 2014 Jun;88(11):5907-11 - PubMed
  45. Life Sci Alliance. 2021 Jun 9;4(7): - PubMed
  46. J Virol. 2010 Jan;84(2):765-72 - PubMed
  47. Nat Rev Microbiol. 2017 Jun;15(6):351-364 - PubMed
  48. J Virol. 2017 Nov 14;91(23): - PubMed
  49. Cell Rep. 2020 Jul 7;32(1):107859 - PubMed
  50. J Virol. 2010 Oct;84(20):10438-47 - PubMed
  51. Curr Opin Virol. 2018 Apr;29:87-100 - PubMed
  52. Sci Rep. 2017 Jun 30;7(1):4475 - PubMed
  53. Nat Commun. 2020 Mar 16;11(1):1411 - PubMed
  54. Virology. 2017 Jul;507:20-31 - PubMed
  55. Virol J. 2016 Jul 29;13:131 - PubMed

Publication Types

Grant support