Display options
Share it on

Front Physiol. 2021 Sep 21;12:744812. doi: 10.3389/fphys.2021.744812. eCollection 2021.

Modulation of Vagal Sensory Neurons .

Frontiers in physiology

Stuart B Mazzone, Seung-Kwon Yang, Jennifer A Keller, Juste Simanauskaite, Jaisy Arikkatt, Matthew J Fogarty, Aung Aung Kywe Moe, Chen Chen, Matthew W Trewella, Luyi Tian, Matthew E Ritchie, Brendan Y Chua, Simon Phipps, Kirsty R Short, Alice E McGovern

Affiliations

  1. Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.
  2. School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
  3. Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
  4. The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia.
  5. QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
  6. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.

PMID: 34621188 PMCID: PMC8490771 DOI: 10.3389/fphys.2021.744812

Abstract

Vagal sensory neurons contribute to the symptoms and pathogenesis of inflammatory pulmonary diseases through processes that involve changes to their morphological and functional characteristics. The alarmin high mobility group box-1 (HMGB1) is an early mediator of pulmonary inflammation and can have actions on neurons in a range of inflammatory settings. We hypothesized that HMGB1 can regulate the growth and function of vagal sensory neurons and we set out to investigate this and the mechanisms involved. Culturing primary vagal sensory neurons from wildtype mice in the presence of HMGB1 significantly increased neurite outgrowth, while acute application of HMGB1 to isolated neurons under patch clamp electrophysiological investigation produced inward currents and enhanced action potential firing. Transcriptional analyses revealed the expression of the cognate HMGB1 receptors, Receptor for Advanced Glycation End products (RAGE) and Toll-like Receptor 4 (TLR4), in subsets of vagal sensory neurons. HMGB1-evoked growth and electrophysiological responses were significantly reduced in primary vagal sensory neurons harvested from RAGE deficient mice and completely absent in neurons from RAGE/TLR4 double deficient mice. Immunohistochemical analysis of vagal sensory neurons collected from mice after intranasal infection with murine pneumovirus or influenza A virus (IAV), or after intratracheal administration with the viral mimetic PolyI:C, revealed a significant increase in nuclear-to-cytoplasm translocation of HMGB1 compared to mock-inoculated mice. Neurons cultured from virus infected wildtype mice displayed a significant increase in neurite outgrowth, which was not observed for neurons from virus infected RAGE or RAGE/TLR4 deficient mice. These data suggest that HMGB1 can enhance vagal sensory neuron growth and excitability, acting primarily

Copyright © 2021 Mazzone, Yang, Keller, Simanauskaite, Arikkatt, Fogarty, Moe, Chen, Trewella, Tian, Ritchie, Chua, Phipps, Short and McGovern.

Keywords: hyperinnervation; hypersensitivity; respiratory virus; vagal ganglia; visceral sensory

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Allergy Clin Immunol. 2017 Aug;140(2):584-587.e8 - PubMed
  2. Elife. 2017 Jan 18;6: - PubMed
  3. Am J Physiol Lung Cell Mol Physiol. 2008 Nov;295(5):L858-65 - PubMed
  4. J Neurosci. 2015 Apr 8;35(14):5693-706 - PubMed
  5. Clin Mol Allergy. 2017 Jun 14;15:12 - PubMed
  6. Neuroscience. 2010 Mar 10;166(1):107-21 - PubMed
  7. FASEB J. 2021 Mar;35(3):e21320 - PubMed
  8. Pulm Pharmacol Ther. 2015 Aug;33:52-6 - PubMed
  9. J Allergy Clin Immunol. 2005 Aug;116(2):325-31 - PubMed
  10. Respiration. 2003 Jan-Feb;70(1):49-53 - PubMed
  11. Pain. 2010 Jun;149(3):514-521 - PubMed
  12. Brain Struct Funct. 2015 Nov;220(6):3683-99 - PubMed
  13. FASEB J. 2004 Dec;18(15):1812-7 - PubMed
  14. Am J Physiol Lung Cell Mol Physiol. 2012 May 1;302(9):L941-8 - PubMed
  15. Brain Inj. 2017;31(1):2-8 - PubMed
  16. J Immunol. 2011 May 15;186(10):5938-48 - PubMed
  17. PLoS One. 2016 May 23;11(5):e0155526 - PubMed
  18. BMC Physiol. 2017 May 25;17(1):6 - PubMed
  19. Proc Natl Acad Sci U S A. 2021 Aug 17;118(33): - PubMed
  20. PLoS One. 2018 Feb 23;13(2):e0193312 - PubMed
  21. PLoS One. 2016 Nov 7;11(11):e0166089 - PubMed
  22. J Virol. 2016 Oct 14;90(21):9618-9631 - PubMed
  23. Mol Neurobiol. 2020 Feb;57(2):949-963 - PubMed
  24. Antioxid Redox Signal. 2014 Mar 1;20(7):1075-85 - PubMed
  25. Eur Respir J. 1991 Jun;4(6):673-82 - PubMed
  26. Lancet. 2015 Mar 28;385(9974):1198-205 - PubMed
  27. Am J Respir Crit Care Med. 2020 Jun 1;201(11):1358-1371 - PubMed
  28. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2068-75 - PubMed
  29. Am J Respir Crit Care Med. 2015 Jul 1;192(1):30-9 - PubMed
  30. Neuron. 2014 Apr 2;82(1):47-54 - PubMed
  31. J Allergy Clin Immunol. 2018 Nov;142(5):1392-1402 - PubMed
  32. Physiol Rev. 2016 Jul;96(3):975-1024 - PubMed
  33. Cell Tissue Res. 2017 Mar;367(3):571-590 - PubMed
  34. J Allergy Clin Immunol. 2014 Aug;134(2):440-50 - PubMed
  35. Cytometry A. 2004 Apr;58(2):167-76 - PubMed
  36. J Pharmacol Sci. 2016 Feb;130(2):139-42 - PubMed
  37. J Allergy Clin Immunol. 2014 Jun;133(6):1521-34 - PubMed
  38. Neuropharmacology. 2008 Oct;55(5):851-9 - PubMed
  39. J Biol Chem. 1995 Oct 27;270(43):25752-61 - PubMed
  40. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11515-20 - PubMed
  41. Am J Respir Crit Care Med. 2021 Feb 1;203(3):348-355 - PubMed
  42. Brain Behav Immun. 2014 Nov;42:169-77 - PubMed
  43. Brain Behav Immun. 2021 Oct;97:42-60 - PubMed
  44. Mucosal Immunol. 2020 Jul;13(4):652-664 - PubMed
  45. J Neurosci. 2009 Oct 28;29(43):13662-71 - PubMed
  46. Exp Neurol. 2013 Nov;249:149-59 - PubMed
  47. J Neuroinflammation. 2012 Jul 23;9:180 - PubMed

Publication Types