Display options
Share it on

Heart Fail Rev. 2021 Oct 08; doi: 10.1007/s10741-021-10166-x. Epub 2021 Oct 08.

Histamine receptors in heart failure.

Heart failure reviews

Scott P Levick

Affiliations

  1. Kolling Institute, St Leonards, Australia. [email protected].
  2. Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, 2006, Australia. [email protected].

PMID: 34622365 DOI: 10.1007/s10741-021-10166-x

Abstract

The biogenic amine, histamine, is found predominantly in mast cells, as well as specific histaminergic neurons. Histamine exerts its many and varied actions via four G-protein-coupled receptors numbered one through four. Histamine has multiple effects on cardiac physiology, mainly via the histamine 1 and 2 receptors, which on a simplified level have opposing effects on heart rate, force of contraction, and coronary vasculature function. In heart failure, the actions of the histamine receptors are complex, the histamine 1 receptor appears to have detrimental actions predominantly in the coronary vasculature, while the histamine 2 receptor mediates adverse effects on cardiac remodeling via actions on cardiomyocytes, fibroblasts, and even endothelial cells. Conversely, there is growing evidence that the histamine 3 receptor exerts protective actions when activated. Little is known about the histamine 4 receptor in heart failure. Targeting histamine receptors as a therapeutic approach for heart failure is an important area of investigation given the over-the-counter access to many compounds targeting these receptors, and thus the relatively straight forward possibility of drug repurposing. In this review, we briefly describe histamine receptor signaling and the actions of each histamine receptor in normal cardiac physiology, before describing in more detail the known role of each histamine receptor in adverse cardiac remodeling and heart failure. This includes information from both clinical studies and experimental animal models. It is the goal of this review article to bring more focus to the possibility of targeting histamine receptors as therapy for heart failure.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: Cardiomyopathy; Heart failure; Histamine; Histamine receptors; Mast cell

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos G, Fonarow GC, Givertz MM et al (2016) 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 68(13):1476–1488 - PubMed
  2. Ferreira JP, Kraus S, Mitchell S, Perel P, Piñeiro D, Chioncel O, Colque R, de Boer RA, Gomez-Mesa JE, Grancelli H et al (2019) World Heart Federation Roadmap for heart failure. Glob Heart 14(3):197–214 - PubMed
  3. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CSP, Sato N, Shah AN et al (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133 - PubMed
  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA et al(2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975 - PubMed
  5. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN et al (2020) Heart Disease and Stroke Statistics-2020 Update: a report From the American Heart Association. Circulation 141(9):e139–e596 - PubMed
  6. Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA (2016) The histamine H3 receptor: structure, pharmacology, and function. Mol Pharmacol 90(5):649–673 - PubMed
  7. Ghamari N, Zarei O, Arias-Montaño JA, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M (2019) Histamine H(3) receptor antagonists/inverse agonists: where do they go? Pharmacol Ther 200:69–84 - PubMed
  8. He G, Hu J, Li T, Ma X, Meng J, Jia M, Lu J, Ohtsu H, Chen Z, Luo X (2012) Arrhythmogenic effect of sympathetic histamine in mouse hearts subjected to acute ischemia. Mol Med (Cambridge, Mass) 18(1):1–9 - PubMed
  9. Marone G, de Crescenzo G, Adt M, Patella V, Arbustini E, Genovese A (1995) Immunological characterization and functional importance of human heart mast cells. Immunopharmacology 31(1):1–18 - PubMed
  10. Marone G, de Crescenzo G, Florio G, Granata F, Dente V, Genovese A (1999) Immunological modulation of human cardiac mast cells. Neurochem Res 24(9):1195–1202 - PubMed
  11. Patella V, de Crescenzo G, Ciccarelli A, Marino I, Adt M, Marone G (1995) Human heart mast cells: a definitive case of mast cell heterogeneity. Int Arch Allergy Immunol 106(4):386–393 - PubMed
  12. Batlle M, Perez-Villa F, Lazaro A, Garcia-Pras E, Ramirez J, Ortiz J, Orus J, Roque M, Heras M, Roig E (2007) Correlation between mast cell density and myocardial fibrosis in congestive heart failure patients. Transpl Proc 39(7):2347–2349 - PubMed
  13. Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 283(2):H518-525 - PubMed
  14. Forman MF, Brower GL, Janicki JS (2006) Rat cardiac mast cell maturation and differentiation following acute ventricular volume overload. Inflamm Res 55(10):408–415 - PubMed
  15. Levick SP, Brower GL, Janicki JS (2019) Substance P-mediated cardiac mast cell activation: an in vitro study. Neuropeptides 74:52–59 - PubMed
  16. Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension (Dallas, Tex: 1979) 53(6):1041–1047 - PubMed
  17. Li J, Lu H, Plante E, Melendez GC, Levick SP, Janicki JS (2012) Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart. J Mol Cell Cardiol 53(4):469–474 - PubMed
  18. Melendez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP (2011) Substance P induces adverse myocardial remodeling via a mechanism involving cardiac mast cells. Cardiovasc Res 92:420–429 - PubMed
  19. Morgan LG, Levick SP, Voloshenyuk TG, Murray DB, Forman MF, Brower GL, Janicki JS (2008) A novel technique for isolating functional mast cells from the heart. Inflamm Res 57:1–6 - PubMed
  20. Widiapradja A, Manteufel EJ, Dehlin HM, Pena J, Goldspink PH, Sharma A, Kolb LL, Imig JD, Janicki JS, Lu B et al (2019) Regulation of cardiac mast cell maturation and function by the neurokinin-1 receptor in the fibrotic heart. Sci Rep 9(1):11004 - PubMed
  21. Dvorak AM (1986) Mast-cell degranulation in human hearts. N Engl J Med 315(15):969–970 - PubMed
  22. Patella V, de Crescenzo G, Lamparter-Schummert B, De Rosa G, Adt M, Marone G (1997) B L-S, G DR, Adt M, G M: Increased cardiac mast cell density and mediator release in patients with dilated cardiomyopathy. Inflamm Res 46(1):S31–S32 - PubMed
  23. Marone G, Patella V (1995) de CG, Genovese A, Adt M: Human heart mast cells in anaphylaxis and cardiovascular disease. Int Arch Allergy Immunol 107(1–3):72–75 - PubMed
  24. Patella V, Marino I, Lamparter B, Arbustini E, Adt M, Marone G (1995) Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J Immunol 154(6):2855–2865 - PubMed
  25. Ingason AB, Mechmet F, Atacho DAM, Steingrímsson E, Petersen PH (2019) Distribution of mast cells within the mouse heart and its dependency on Mitf. Mol Immunol 105:9–15 - PubMed
  26. Marone G, Genovese A, Varricchi G, Granata F (2014) Human heart as a shock organ in anaphylaxis. Allergo J Int 23(2):60–66 - PubMed
  27. Morrey C, Brazin J, Seyedi N, Corti F, Silver RB, Levi R (2010) Interaction between sensory C-fibers and cardiac mast cells in ischemia/reperfusion: activation of a local renin-angiotensin system culminating in severe arrhythmic dysfunction. J Pharmacol Exp Ther 335(1):76–84 - PubMed
  28. Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci USA 101(37):13607–13612 - PubMed
  29. Arizono N, Matsuda S, Hattori T, Kojima Y, Maeda T, Galli SJ (1990) Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab Invest 62(5):626–634 - PubMed
  30. Brower GL, Janicki JS (2005) Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Cardiac Fail 11(7):548–556 - PubMed
  31. Stewart JA, Wei CC, Brower GL, Rynders PE, Hankes GH, Dillon AR, Lucchesi PA, Janicki JS, Dell’Italia LJ (2003) Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol 35(3):311–319 - PubMed
  32. Zhang W, Chancey AL, Tzeng HP, Zhou Z, Lavine KJ, Gao F, Sivasubramanian N, Barger PM, Mann DL (2011) The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124(19):2106–2116 - PubMed
  33. Hara M, Ono K, Hwang MW, Iwasaki A, Okada M, Nakatani K, Sasayama S, Matsumori A (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195(3):375–381 - PubMed
  34. Li QY, Raza-Ahmad A, MacAulay MA, Lalonde LD, Rowden G, Trethewey E, Dean S (1992) The relationship of mast cells and their secreted products to the volume of fibrosis in posttransplant hearts. Transplantation 53(5):1047–1051 - PubMed
  35. Zweifel M, Hirsiger H, Matozan K, Welle M, Schaffner T, Mohacsi P (2002) Mast cells in ongoing acute rejection: increase in number and expression of a different phenotype in rat heart transplants. Transplantation 73(11):1707–1716 - PubMed
  36. He A, Fang W, Zhao K, Wang Y, Li J, Yang C, Benadjaoud F, Shi GP (2019) Mast cell-deficiency protects mice from streptozotocin-induced diabetic cardiomyopathy. Translational research : the journal of laboratory and clinical medicine 208:1–14 - PubMed
  37. Huang ZG, Jin Q, Fan M, Cong XL, Han SF, Gao H, Shan Y (2013) Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation. PLoS One 8(3):e60827 - PubMed
  38. Palaniyandi SS, Watanabe K, Ma M, Tachikawa H, Kodama M, Aizawa Y (2005) Involvement of mast cells in the development of fibrosis in rats with postmyocarditis dilated cardiomyopathy. Biol Pharm Bull 28(11):2128–2132 - PubMed
  39. Janicki JS, Brower GL, Levick SP (2015) The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods in molecular biology (Clifton, NJ) 1220:121–139 - PubMed
  40. Levick SP, Melendez GC, Plante E, McLarty JL, Brower GL, Janicki JS (2011) Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 89(1):12–19 - PubMed
  41. Levick SP, Widiapradja A (2018) Mast cells: key contributors to cardiac fibrosis. Int J Mol Sci 19(1) - PubMed
  42. Li J, Jubair S, Levick SP, Janicki JS (2016) The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis. IJC Metab Endocr 10:16–23 - PubMed
  43. McLarty JL, Melendez GC, Brower GL, Janicki JS, Levick SP (2011) Tryptase/protease-activated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and collagen synthesis by cardiac fibroblasts. Hypertension (Dallas, Tex: 1979) 58(2):264–270 - PubMed
  44. Akasu M, Urata H, Kinoshita A, Sasaguri M, Ideishi M, Arakawa K (1998) Differences in Tissue Angiotensin IIûForming Pathways by Species and Organs In Vitro. Hypertension (Dallas, Tex : 1979) 1998, 32(3):514–520 - PubMed
  45. Akgul A, Skrabal CA, Thompson LO, Loebe M, Lafuente JA, Noon GP, Youker KA (2004) Role of mast cells and their mediators in failing myocardium under mechanical ventricular support. J Heart Lung Transplant 23(6):709–715 - PubMed
  46. Jenne DE, Tschopp J (1991) Angiotensin II-forming heart chymase is a mast-cell-specific enzyme. In: Biochem J vol 276,  pp 567–568 - PubMed
  47. Frangogiannis NG, Burns AR, Michael LH, Entman ML (1999) Histochemical and morphological characteristics of canine cardiac mast cells. Histochem J 31(4):221–229 - PubMed
  48. Jin D, Takai S, Yamada M, Sakaguchi M, Yao Y, Miyazaki M (2001) Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn J Pharmacol 86(2):203–214 - PubMed
  49. Kanemitsu H, Takai S, Tsuneyoshi H, Nishina T, Yoshikawa K, Miyazaki M, Ikeda T, Komeda M (2006) Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens Res 29(1):57–64 - PubMed
  50. Kanemitsu H, Takai S, Tsuneyoshi H, Yoshikawa E, Nishina T, Miyazaki M, Ikeda T, Komeda M (2008) Chronic chymase inhibition preserves cardiac function after left ventricular repair in rats. Eur J Cardiothorac Surg 33(1):25–31 - PubMed
  51. Kitaura-Inenaga K, Hara M, Higuchi K, Yamamoto K, Yamaki A, Ono K, Nakano A, Kinoshita M, Sasayama S, Matsumori A (2003) Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J 67(10):881–884 - PubMed
  52. Matsumoto C, Hayashi T, Kitada K, Yamashita C, Miyamura M, Mori T, Ukimura A, Ohkita M, Jin D, Takai S et al (2009) Chymase plays an important role in left ventricular remodeling induced by intermittent hypoxia in mice. Hypertension (Dallas, Tex: 1979) 54(1):164–171 - PubMed
  53. Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW (2011) Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 339(1):143–151 - PubMed
  54. Shiota NJD, Takai S, Kawamura T, Koyama M, Nakamura N, Miyazakai M (1997) Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett 406:301–304 - PubMed
  55. Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, Caughey GH, Entman ML, Frangogiannis NG (2005) Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol 205(1):102–111 - PubMed
  56. Takai S, Jin D, Muramatsu M, Okamoto Y, Miyazaki M (2004) Therapeutic applications of chymase inhibitors in cardiovascular diseases and fibrosis. Eur J Pharmacol 501(1–3):1–8 - PubMed
  57. Takai S, Jin D, Sakaguchi M, Katayama S, Muramatsu M, Sakaguchi M, Matsumura E, Kim S, Miyazaki M (2003) A novel chymase inhibitor, 4-[1-([bis-(4-methyl-phenyl)-methyl]-carbamoyl)3-(2-ethoxy-benzyl)-4-oxo-azetidin e-2-yloxy]-benzoic acid (BCEAB), suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther 305(1):17–23 - PubMed
  58. Zhao XY, Zhao LY, Zheng QS, Su JL, Guan H, Shang FJ, Niu XL, He YP, Lu XL (2008) Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem 310(1–2):159–166 - PubMed
  59. Triggiani M, Genovese A, Vigorito C, Marone G (1985) Histamine and human heart. Int Arch Allergy Appl Immunol 77(1–2):174–176 - PubMed
  60. Wolff AA, Levi R (1986) Histamine and cardiac arrhythmias. Circ Res 58(1):1–16 - PubMed
  61. Bristow MR, Kantrowitz NE, Harrison WD, Minobe WA, Sageman WS, Billingham ME (1983) Mediation of subacute anthracycline cardiotoxicity in rabbits by cardiac histamine release. J Cardiovasc Pharmacol 5(6):913–919 - PubMed
  62. Decorti G, Candussio L, Klugmann FB, Strohmayer A, Mucci MP, Mosco A, Baldini L (1997) Adriamycin-induced histamine release from heart tissue in vitro. Cancer Chemother Pharmacol 40(4):363–366 - PubMed
  63. Kondru SK, Potnuri AG, Allakonda L, Konduri P (2018) Histamine 2 receptor antagonism elicits protection against doxorubicin-induced cardiotoxicity in rodent model. Mol Cell Biochem 441(1–2):77–88 - PubMed
  64. Zdravkovic V, Pantovic S, Rosic G, Tomic-Lucic A, Zdravkovic N, Colic M, Obradovic Z, Rosic M (2011) Histamine blood concentration in ischemic heart disease patients. J Biomed Biotechnol 2011:315709 - PubMed
  65. Asanuma H, Minamino T, Ogai A, Kim J, Asakura M, Komamura K, Sanada S, Fujita M, Hirata A, Wakeno M et al (2006) Blockade of histamine H2 receptors protects the heart against ischemia and reperfusion injury in dogs. J Mol Cell Cardiol 40(5):666–674 - PubMed
  66. Valen G, Kaszaki J, Szabo I, Nagy S, Vaage J (1994) Histamine release and its effects in ischaemia-reperfusion injury of the isolated rat heart. Acta Physiol Scand 150(4):413–424 - PubMed
  67. Potnuri AG, Allakonda L, Appavoo A, Saheera S, Nair RR (2018) Association of histamine with hypertension-induced cardiac remodeling and reduction of hypertrophy with the histamine-2-receptor antagonist famotidine compared with the beta-blocker metoprolol. Hypertension research : official journal of the Japanese Society of Hypertension 41(12):1023–1035 - PubMed
  68. Kantrowitz NE, Bristow MR, Minobe WA, Billingham ME, Harrison DC (1982) Histamine-mediated myocardial damage in rabbits. J Mol Cell Cardiol 14(9):551–555 - PubMed
  69. He GH, Cai WK, Meng JR, Ma X, Zhang F, Lu J, Xu GL (2015) Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese. Am J Cardiol 115(11):1555–1562 - PubMed
  70. Walter M, Stark H (2012) Histamine receptor subtypes: a century of rational drug design. Front Biosci (Schol Ed) 4:461–488 - PubMed
  71. Monczor F, Fernandez N (2016) Current knowledge and perspectives on histamine H1 and H2 receptor pharmacology: functional selectivity, receptor crosstalk, and repositioning of classic histaminergic ligands. Mol Pharmacol 90(5):640–648 - PubMed
  72. Simons FE, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128(6):1139-1150.e1134 - PubMed
  73. Mills JG, Wood JR (1989) The pharmacology of histamine H2-receptor antagonists. Methods Find Exp Clin Pharmacol 11(Suppl 1):87–95 - PubMed
  74. Schunack W (1989) Pharmacology of H2-receptor antagonists: an overview. J Int Med Res 17(Suppl 1):9a–16a - PubMed
  75. Micallef S, Stark H, Sasse A (2013) Polymorphisms and genetic linkage of histamine receptors. Life Sci 93(15):487–494 - PubMed
  76. Tanimoto A, Sasaguri Y, Ohtsu H (2006) Histamine network in atherosclerosis. Trends Cardiovasc Med 16(8):280–284 - PubMed
  77. Matsuda N, Jesmin S, Takahashi Y, Hatta E, Kobayashi M, Matsuyama K, Kawakami N, Sakuma I, Gando S, Fukui H et al (2004) Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J Pharmacol Exp Ther 309(2):786–795 - PubMed
  78. Nault MA, Milne B, Parlow JL (2002) Effects of the selective H1 and H2 histamine receptor antagonists loratadine and ranitidine on autonomic control of the heart. Anesthesiology 96(2):336–341 - PubMed
  79. Felix SB, Baumann G, Helmus S, Sattelberger U (1988) The role of histamine in cardiac anaphylaxis; characterization of histaminergic H1- and H2-receptor effects. Basic Res Cardiol 83(5):531–539 - PubMed
  80. Assem ES (1989) Anaphylactic reactions affecting the human heart. Agents Actions 27(1–2):142–145 - PubMed
  81. Denizot Y, Boudet J, Burtin C, Marro I, Benveniste J (1990) Monoclonal IgE-mediated cardiac hypersensitivity reactions in the guinea-pig. Agents Actions 29(3–4):167–171 - PubMed
  82. Levi R, Zavecz JH, Ovary Z (1978) IgE-mediated cardiac hypersensitivity reactions. An experimental model. Int Arch Allergy Appl Immunol 57(6):529–534 - PubMed
  83. Silva Machado FR, Assem ES, Ezeamuzie CI (1985) Cardiac anaphylaxis: the role of different mediators. Part I: histamine Allergol Immunopathol (Madr ) 13(3):259–272 - PubMed
  84. Gebbia N, Flandina C, Leto G, Tumminello FM, Sanguedolce R, Candiloro V, Gagliano M, Rausa L (1987) The role of histamine in doxorubicin and teniposide-induced cardiotoxicity in dog and mouse. Tumori 73(3):279–287 - PubMed
  85. Bristow MR, Cubicciotti R, Ginsburg R, Stinson EB, Johnson C (1982) Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol Pharmacol 21(3):671–679 - PubMed
  86. Tozzi CA, Dorrell SG, Merrill GF (1985) Evidence of histamine-induced myocardial ischaemia: reversal by chlorpheniramine and potentiation by atherosclerosis. Cardiovasc Res 19(12):744–753 - PubMed
  87. Ginsburg R, Bristow MR, Kantrowitz N, Baim DS, Harrison DC (1981) Histamine provocation of clinical coronary artery spasm: implications concerning pathogenesis of variant angina pectoris. Am Heart J 102(5):819–822 - PubMed
  88. Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Nakamura M (1985) Histamine-induced spasm not significantly modulated by prostanoids in a swine model of coronary artery spasm. J Am Coll Cardiol 6(2):321–327 - PubMed
  89. Kounis NG, Zavras GM (1991) Histamine-induced coronary artery spasm: the concept of allergic angina. Br J Clin Pract 45(2):121–128 - PubMed
  90. Kounis NG (2006) Kounis syndrome (allergic angina and allergic myocardial infarction): a natural paradigm? Int J Cardiol 110(1):7–14 - PubMed
  91. Erdogan O, Altun A, Gazi S, Ozbay G (2004) Loratidine improves ischemic parameters of exercise stress test in patients with acute myocardial infarction. Am Heart J 148(6):e24 - PubMed
  92. Miyazawa N, Watanabe S, Matsuda A, Kondo K, Hashimoto H, Umemura K, Nakashima M (1998) Role of histamine H1 and H2 receptor antagonists in the prevention of intimal thickening. Eur J Pharmacol 362(1):53–59 - PubMed
  93. Rozenberg I, Sluka SH, Rohrer L, Hofmann J, Becher B, Akhmedov A, Soliz J, Mocharla P, Borén J, Johansen P et al (2010) Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins. Arterioscler Thromb Vasc Biol 30(5):923–930 - PubMed
  94. Harman D (1962) Atherosclerosis; inhibiting effect of an antihistaminic drug, chlorpheniramine. Circ Res 11:277–282 - PubMed
  95. Clejan S, Japa S, Clemetson C, Hasabnis SS, David O, Talano JV (2002) Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J Cell Mol Med 6(4):583–592 - PubMed
  96. Takagishi T, Sasaguri Y, Nakano R, Arima N, Tanimoto A, Fukui H, Morimatsu M (1995) Expression of the histamine H1 receptor gene in relation to atherosclerosis. Am J Pathol 146(4):981–988 - PubMed
  97. Zhou Y, Gao C, Wang H, Liu L, Huang Z, Fa X (2018) Histamine H1 type receptor antagonist loratadine ameliorates oxidized LDL induced endothelial dysfunction. Biomed Pharmacother 106:1448–1453 - PubMed
  98. Jacobson BC, Ferris TG, Shea TL, Mahlis EM, Lee TH, Wang TC (2003) Who is using chronic acid suppression therapy and why? Am J Gastroenterol 98(1):51–58 - PubMed
  99. Reinhardt D, Schmidt U, Brodde OE, Schümann HJ (1977) H1 - and H2-receptor mediated responses to histamine on contractility and cyclic AMP of atrial and papillary muscles from guinea-pig hearts. Agents Actions 7(1):1–12 - PubMed
  100. Gergs U, Bernhardt G, Buchwalow IB, Edler H, Fröba J, Keller M, Kirchhefer U, Köhler F, Mißlinger N, Wache H et al (2019) Initial characterization of transgenic mice overexpressing human histamine H(2) receptors. J Pharmacol Exp Ther 369(1):129–141 - PubMed
  101. Gergs U, Kirchhefer U, Bergmann F, Künstler B, Mißlinger N, Au B, Mahnkopf M, Wache H, Neumann J (2020) Characterization of stressed transgenic mice overexpressing H(2)-histamine receptors in the heart. J Pharmacol Exp Ther 374(3):479–488 - PubMed
  102. Takahama H, Asanuma H, Sanada S, Fujita M, Sasaki H, Wakeno M, Kim J, Asakura M, Takashima S, Minamino T et al (2010) A histamine H - PubMed
  103. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, Cao S, Huang X, Fukushima Y, Bin J et al (2014) Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (London, England: 1979) 127(7):435–448 - PubMed
  104. Kingwell BA (2000) Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14(12):1685–1696 - PubMed
  105. Luo T, Chen B, Zhao Z, He N, Zeng Z, Wu B, Fukushima Y, Dai M, Huang Q, Xu D et al (2013) Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res Cardiol 108(3):342 - PubMed
  106. Potnuri AG, Allakonda L, Saheera S (2020) Involvement of histamine 2 receptor in alpha 1 adrenoceptor mediated cardiac hypertrophy and oxidative stress in H9c2 cardio myoblasts. J Cardiovasc Transl Res - PubMed
  107. Kim J, Washio T, Yamagishi M, Yasumura Y, Nakatani S, Hashimura K, Hanatani A, Komamura K, Miyatake K, Kitamura S et al (2004) A novel data mining approach to the identification of effective drugs or combinations for targeted endpoints–application to chronic heart failure as a new form of evidence-based medicine. Cardiovasc Drugs Ther 18(6):483–489 - PubMed
  108. Kim J, Ogai A, Nakatani S, Hashimura K, Kanzaki H, Komamura K, Asakura M, Asanuma H, Kitamura S, Tomoike H et al (2006) Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol 48(7):1378–1384 - PubMed
  109. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K et al (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881 - PubMed
  110. Leary PJ, Tedford RJ, Bluemke DA, Bristow MR, Heckbert SR, Kawut SM, Krieger EV, Lima JA, Masri CS, Ralph DD et al (2016) Histamine H2 receptor antagonists, left ventricular morphology, and heart failure risk: the MESA study. J Am Coll Cardiol 67(13):1544–1552 - PubMed
  111. Adelborg K, Sundbøll J, Schmidt M, Bøtker HE, Weiss NS, Pedersen L, Sørensen HT (2018) Use of histamine H(2) receptor antagonists and outcomes in patients with heart failure: a nationwide population-based cohort study. Clin Epidemiol 10:521–530 - PubMed
  112. Leary PJ, Barr RG, Bluemke DA, Bristow MR, Kronmal RA, Lima JA, Ralph DD, Ventetuolo CE, Kawut SM (2014) H2 receptor antagonists and right ventricular morphology: the MESA right ventricle study. Ann Am Thorac Soc 11(9):1379–1386 - PubMed
  113. Yoshihisa A, Takiguchi M, Kanno Y, Sato A, Yokokawa T, Miura S, Abe S, Misaka T, Sato T, Suzuki S et al (2017) Associations of acid suppressive therapy with cardiac mortality in heart failure patients. J Am Heart Assoc 6(5) - PubMed
  114. Halabi A, Kirch W (1991) Negative chronotropic effects of nizatidine. Gut 32(6):630–634 - PubMed
  115. Kirch W, Halabi A, Linde M, Santos SR, Ohnhaus EE (1989) Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements. Gastroenterology 96(6):1388–1392 - PubMed
  116. Hinrichsen H, Halabi A, Kirch W (1990) Hemodynamic effects of different H2-receptor antagonists. Clin Pharmacol Ther 48(3):302–308 - PubMed
  117. Halabi A, Nokhodian A, Kirch W (1992) Haemodynamic effects of roxatidine, an H2-receptor antagonist. Clin Investig 70(2):118–121 - PubMed
  118. Kirch W, Halabi A, Hinrichsen H (1992) Hemodynamic effects of quinidine and famotidine in patients with congestive heart failure. Clin Pharmacol Ther 51(3):325–333 - PubMed
  119. Lucas BD Jr, Williams MA, Mohiuddin SM, LaMadrid LJ, Schroeder LJ, Hilleman DE (1998) Effect of oral H2-receptor antagonists on left ventricular systolic function and exercise capacity in patients with chronic stable heart failure. Pharmacotherapy 18(4):824–830 - PubMed
  120. Endou M, Poli E, Levi R (1994) Histamine H3-receptor signaling in the heart: possible involvement of Gi/Go proteins and N-type Ca++ channels. J Pharmacol Exp Ther 269(1):221–229 - PubMed
  121. Mazenot C, Ribuot C, Durand A, Joulin Y, Demenge P, Godin-Ribuot D (1999) In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog. Br J Pharmacol 126(1):264–268 - PubMed
  122. Imamura M, Poli E, Omoniyi AT, Levi R (1994) Unmasking of activated histamine H3-receptors in myocardial ischemia: their role as regulators of exocytotic norepinephrine release. J Pharmacol Exp Ther 271(3):1259–1266 - PubMed
  123. Chrusch C, Sharma S, Unruh H, Bautista E, Duke K, Becker A, Kepron W, Mink SN (1999) Histamine H3 receptor blockade improves cardiac function in canine anaphylaxis. Am J Respir Crit Care Med 160(4):1142–1149 - PubMed
  124. Hatta E, Yasuda K, Levi R (1997) Activation of histamine H3 receptors inhibits carrier-mediated norepinephrine release in a human model of protracted myocardial ischemia. J Pharmacol Exp Ther 283(2):494–500 - PubMed
  125. Imamura M, Lander HM, Levi R (1996) Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors. Circ Res 78(3):475–481 - PubMed
  126. Imamura M, Seyedi N, Lander HM, Levi R (1995) Functional identification of histamine H3-receptors in the human heart. Circ Res 77(1):206–210 - PubMed
  127. Böhm M, Maack C (2000) Treatment of heart failure with beta-blockers. Mechanisms and results. Basic Res Cardiol 95(1):I15–24 - PubMed
  128. Silver RB, Poonwasi KS, Seyedi N, Wilson SJ, Lovenberg TW, Levi R (2002) Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings. Proc Natl Acad Sci USA 99(1):501–506 - PubMed
  129. Seyedi N, Mackins CJ, Machida T, Reid AC, Silver RB, Levi R (2005) Histamine H3-receptor-induced attenuation of norepinephrine exocytosis: a decreased protein kinase a activity mediates a reduction in intracellular calcium. J Pharmacol Exp Ther 312(1):272–280 - PubMed
  130. Levi R, Seyedi N, Schaefer U, Estephan R, Mackins CJ, Tyler E, Silver RB (2007) Histamine H3-receptor signaling in cardiac sympathetic nerves: Identification of a novel MAPK-PLA2-COX-PGE2-EP3R pathway. Biochem Pharmacol 73(8):1146–1156 - PubMed
  131. Hashikawa-Hobara N, Chan NY, Levi R (2012) Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart. J Pharmacol Exp Ther 340(1):185–191 - PubMed
  132. Morisset S, Sasse A, Gbahou F, Héron A, Ligneau X, Tardivel-Lacombe J, Schwartz JC, Arrang JM (2001) The rat H3 receptor: gene organization and multiple isoforms. Biochem Biophys Res Commun 280(1):75–80 - PubMed
  133. McCaffrey SL, Lim G, Bullock M, Ksparian AO, Clifton-Bligh R, Campbell WB, Widiapradja A, Levick SP (2020) The histamine 3 receptor is expressed in the heart and its activation opposes adverse cardiac remodeling in the angiotensin II mouse model. Int J Mol Sci 21(24) - PubMed
  134. Piera L, Olczak S, Kun T, Galdyszynska M, Ciosek J, Szymanski J, Drobnik J (2019) Disruption of histamine/H3 receptor signal reduces collagen deposition in cultures scar myofibroblasts. J Physiol Pharmacol 70(2) - PubMed
  135. Henegar JR. Brower GL, Kabour A, Janicki JS (1995) Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. In: Am J Physiol. Edited by GL B, A K, JS J, vol. 269; H1564-H1569 - PubMed
  136. Henegar JR, Schwartz DD, Janicki JS (1998) ANG II-related myocardial damage: role of cardiac sympathetic catecholamines and beta-receptor regulation. In: Am J Physiol. Edited by DD S, JS J, vol. 275; H534-H541 - PubMed
  137. Kabour A, Henegar JR, Janicki JS (1994) Angiotensin II (AII)-induced myocyte necrosis: role of the AII receptor. J Cardiovasc Pharmacol 23(4):547–553 - PubMed
  138. Perlini S, Palladini G, Ferrero I, Tozzi R, Fallarini S, Facoetti A, Nano R, Clari F, Busca G, Fogari R et al (2005) Sympathectomy or doxazosin, but not propranolol, blunt myocardial interstitial fibrosis in pressure-overload hypertrophy. Hypertension (Dallas, Tex: 1979) 46(5):1213–1218 - PubMed
  139. Lameris TW, de Zeeuw S, Duncker DJ, Alberts G, Boomsma F, Verdouw PD, van den Meiracker AH (2002) Exogenous angiotensin II does not facilitate norepinephrine release in the heart. Hypertension (Dallas, Tex: 1979) 40(4):491–497 - PubMed
  140. Yadav CH, Najmi AK, Akhtar M, Khanam R (2015) Cardioprotective role of H - PubMed
  141. Chen Y, Paavola J, Stegajev V, Stark H, Chazot PL, Wen JG, Konttinen YT (2015) Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes. Eur J Pharmacol 754:173–178 - PubMed
  142. Dehlin HM, Levick SP (2014) Substance P in heart failure: the good and the bad. Int J Cardiol 170(3):270–277 - PubMed
  143. Dehlin HM, Manteufel EJ, Monroe AL, Reimer MH Jr, Levick SP (2013) Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. Int J Cardiol 168(5):4643–4651 - PubMed
  144. Levick SP, Soto-Pantoja DR, Bi J, Hundley WG, Widiapradja A, Manteufel EJ, Bradshaw TW, Meléndez GC (2019) Doxorubicin-induced myocardial fibrosis involves the neurokinin-1 Receptor and direct effects on cardiac fibroblasts. Heart Lung Circ 28(10):1598–1605 - PubMed
  145. Kramer JH, Phillips TM, Weglicki WB (1997) Magnesium-deficiency-enhanced post-ischemic myocardial injury is reduced by substance P receptor blockade. J Mol Cell Cardiol 29(1):97–110 - PubMed
  146. Mak IT, Chmielinska JJ, Kramer JH, Spurney CF, Weglicki WB (2011) Loss of neutral endopeptidase activity contributes to neutrophil activation and cardiac dysfunction during chronic hypomagnesemia: Protection by substance P receptor blockade. Exp Clin Cardiol 16(4):121–124 - PubMed
  147. Mak IT, Kramer JH, Chmielinska JJ, Spurney CF, Weglicki WB (2015) EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade. J Cardiovasc Pharmacol 65(1):54–61 - PubMed
  148. Weglicki WB, Mak IT, Phillips TM (1994) Blockade of cardiac inflammation in Mg2+ deficiency by substance P receptor inhibition. Circ Res 74(5):1009–1013 - PubMed
  149. D’Souza M, Garza MA, Xie M, Weinstock J, Xiang Q, Robinson P (2007) Substance P is associated with heart enlargement and apoptosis in murine dilated cardiomyopathy induced by Taenia crassiceps infection. J Parasitol 93(5):1121–1127 - PubMed
  150. Robinson P, Garza A, Moore J, Eckols TK, Parti S, Balaji V, Vallejo J, Tweardy DJ (2009) Substance P is required for the pathogenesis of EMCV infection in mice. Int J Clin Exp Med 2(1):76–86 - PubMed
  151. Robinson P, Taffet GE, Engineer N, Khumbatta M, Firozgary B, Reynolds C, Pham T, Bulsara T, Firozgary G (2015) Substance P receptor antagonism: a potential novel treatment option for viral-myocarditis. BioMed Res Int 2015:645153 - PubMed
  152. He GH, Cai WK, Zhang JB, Ma CY, Yan F, Lu J, Xu GL (2016) Associations of polymorphisms in HRH2, HRH3, DAO, and HNMT genes with risk of chronic heart failure. Biomed Res Int 2016:1208476 - PubMed
  153. Noguchi K, Ishida J, Kim JD, Muromachi N, Kako K, Mizukami H, Lu W, Ishimaru T, Kawasaki S, Kaneko S et al (2020) Histamine receptor agonist alleviates severe cardiorenal damages by eliciting anti-inflammatory programming. Proc Natl Acad Sci USA 117(6):3150–3156 - PubMed
  154. Pinacho-García M, Marichal-Cancino BA, Villalón CM (2016) Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow. Eur J Pharmacol 773:85–92 - PubMed
  155. Stasiak A, Gola J, Kraszewska K, Mussur M, Kobos J, Mazurek U, Stark H, Fogel WA (2018) Experimental autoimmune myocarditis in rats and therapeutic histamine H1 - H4 receptor inhibition. J Physiol Pharmacol 69(6) - PubMed
  156. Durante M, Sgambellone S, Lanzi C, Nardini P, Pini A, Moroni F, Masini E, Lucarini L (2019) Effects of PARP-1 deficiency and histamine H(4) receptor inhibition in an inflammatory model of lung fibrosis in mice. Front Pharmacol 10:525 - PubMed
  157. Rossbach K, Wahle K, Bruer G, Brehm R, Langeheine M, Rode K, Schaper-Gerhardt K, Gutzmer R, Werfel T, Kietzmann M et al (2020) Histamine 2 receptor agonism and histamine 4 receptor antagonism ameliorate inflammation in a model of psoriasis. Acta dermato-venereologica 100(19):adv00342 - PubMed
  158. Wechsler JB, Szabo A, Hsu CL, Krier-Burris RA, Schroeder HA, Wang MY, Carter RG, Velez TE, Aguiniga LM, Brown JB et al (2018) Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis. Mucosal Immunol 11(3):861–870 - PubMed
  159. He GH, Xu GL, Cai WK, Zhang J (2016) Is histamine H(2) receptor a real promising target for prevention or treatment of heart failure? J Am Coll Cardiol 68(18):2029 - PubMed
  160. Leary PJ, Bristow MR (2016) Reply: Is histamine H(2) receptor a real promising target for prevention or treatment of heart failure? J Am Coll Cardiol 68(18):2029–2030 - PubMed

Publication Types